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CHAPTER FOURTEEN

REPEATED-MEASURES DESIGNS

OBJECTIVES

To discuss the analysis of variance by considering expetaihgesigns in which the same

subject is measured under all levels of one or more indepérariables.
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In our discussion of the analysis of variance, we ltaveerned ourselves with experimental
designs that have different subjects in the diffecetis. More precisely, we have been
concerned with designs in which the cells are independenncorrelated. (Under the
assumptions of the analysis of varianiodependenanduncorrelatedare synonymous in this
context.) In this chapter we are going to be concernedthe problem of analyzing data where
some or all of the cells are not independent. Suclydgesire somewhat more complicated to
analyze, and the formulae because more complex., ioperhaps even all, readers will
approach the problem using computer software such as SEFoHowever, to understand
what you are seeing, you need to know something about howgwld approach the problem
by hand; and that leads to lots and lots of formulaegé you to treat the formulae lightly, and
not feel that you have to memorize any of them. Thapter needs to be complete, and that
means we have to go into the analysis at some depttrerbatnber that you can always come
back to the formulae when you need them, and don’'t wawaytethe calculations too much until

you do need them.

If you think of a typical one-way analysis of varianeih different subjects serving under the
different treatments, you would probably be willing taxcede that the correlations between

treatments 1 and 2, 1 and 3, and 2 and 3 have an expectat@mn.o



Treatment 1 Treatment 2 Treatment 3

Xll Xﬂl XEI
Xlz Xn XEE
Xl?e Xﬂx X3?¢

However, suppose that in the design diagrammed heraitie subjects were used in all three
treatments. Thus, instead of 8ubjects measured once, we hageibjects measured three
times. In this case, we would be hard put to believe tkantbrcorrelations of the three
treatments would have expectancies of zero. On theargnthe better subjects under treatment
1 would probably also perform well under treatments 2 aati@the poorer subjects under
treatment 1 would probably perform poorly under the otbeditions, leading to significant

correlations among treatments.

This lack of independence among the treatments would easesgous problem if it were not for
the fact that we can separate outpantition, and remove the dependence imposed by repeated
measurements on the same subjects. (To use a termilthEcome much more familiar in
Chapter 15, we can say that we paetialling out effects that cause the dependence.) In fact,
one of the main advantagesrepeated-measures designsis that they allow us to reduce overall
variability by using a common subject pool for all treattegand at the same time allow us to
remove subject differences from our error term, leavegetrror components independent from

treatment to treatment or cell to cell.

As an illustration, consider the highly exaggeratea&data on four subjects over three
treatments presented in Table 14.1. Here the dependeriil@asidhe number of trials to

criterion on some task. If you look first at the treaht means, you will see some slight



differences, but nothing to get too excited about. There mwch variability within each
treatment that it would at first appear that the medfex @nly by chance. But look at the
subject means. It is apparent that subject 1 learns quiolgrall conditions, and that subjects 3
and 4 learn remarkably slowly. These differences amoagubjects are producing most of the
differenceswithin treatments, and yet they have nothing to do withréegment effect. If we
could remove these subject differences we would haveter lpahd smaller) estimate of error. At
the same time, it is the subject differences thatagating the high positive intercorrelations

among the treatments, and these too we will partiabpdibrming a separate term for subjects.

Table 14.1 Hypothetical data for simple repeated-measures designs

Treatment
Subj ect 1 2 3 Mean
1 2 4 7 4.33
2 10 12 13 11.67
3 22 29 30 27.00
4 30 31 34 31.67
Mean 16 19 21 18.67

One laborious way to do this would be to put all the susijecintributions on a common footing

by equating subject means without altering the relationgtnmpmng the scores obtained by that
particular subject. Thus, we could ég‘t: A=, : where}?z' is the mean of theh subject.

Now subjects would all have the same mea‘ﬁrsT |3), and any remaining differences among
the scores could be attributable only to error or to treaSnélthough this approach would

work, it is not practical. An alternative, and easagproach is to calculate a sum of squares

between subjects (denoted as eithiSretea s O sss) and remove this from~wa before we



begin. This can be shown to be algebraically equivadetite first procedure and is essentially

the approach we will adopt.

The solution is represented diagrammatically in Figure Hete we partition the overall
variation into variation between subjects and vanetathin subjects. We do the same with the
degrees of freedom. Some of the variation within a stigettributable to the fact that his
scores come from different treatments, and someribugable to error; this further partitioning

of variation is shown in the third line of the figureeWill always think of a repeated-measures

analysis adirst partitioning the™ um into SPeemeensiti and SSuisnniy Depending on the

complexity of the design, one or both of these partstimay then be further partitioned.

Partition of Sums of Squares Partition of Degrees of Freedom
kn—1
Total variation / \
Between subjects Within subjects m-1 fifn )1

Between treatmenérror\ k-1 (n-1)(k-1) \

Figure 14.1 Partition of sums of squares and degrees dbfree

The following discussion of repeated-measures designsrdgaibegin to explore the area. For
historical reasons, the statistical literature hasummhphasized the importance of these designs.

As a result, they have been developed mostly by seamtists, particularly psychologists. By



far the most complete coverage of these designsirgif;m Winer, Brown, and Michels (1991).
Their treatment of repeated-measures designs is excatldréxtensive, and much of this

chapter reflects the influence of Winer’s work.

14.1. THE STRUCTURAL MODEL

First, some theory to keep me happy. Two structural medeillsl underlie the analysis of data

like those shown in Table 14.1. The simplest model is
Xg,. =H+m T ey
where

= the grand mean
7T, = a constant assoctated with the ith person or subject, representing how much
that persen differs from the average persen

T, = acenstant associated with the th treatment, representing how much

that treatment mean differs from the average treatment mean
gy = the experimental error associated with the ith subject under the fth treatment

The variable® %% are assumed to be independently and normally distribubechéizero

within each treatment. Their variancéﬁ, and C'f are assumed to be homogeneous across
treatments. (In presenting expected means square, | antlisingtation developed in the

preceding chapters. The error term and subject factmoasdered to be random, so those
variances are presented a@ and a; . (Subjects are always treated as random.) However the

2
treatment factor is generally a fixed factor, so itsatan is denoted a& ) With these

assumptions it is possible to derive the expected meamesjghown in Model | of Table 14.2.



Table 14.2 Expected mean squares for simple repeated-measuressdesign

Mode | Model 11

XF-=,M+}‘?; + T tey X{r.:,u+;?rz. +1T, + T ey
Source E(MS) Source E(MS)
Subjects & +ia’ Subjects o +ka’
Treatments a? +ud? Treatments a4t 4l
Error a Error ot

An alternative and probably more realistic model is given
Xﬁ" = [T+ T T ey
Here we have added a Subject x Treatment interactionttethe model, which allows different

subjects to change differently over treatments. Thenasgons of the first model will continue

to hold, and we will also assume ti& to be distributed around zero independently of the other
elements of the model. This second model gives rideetexpected mean squares shown in

Model Il of Table 14.2.

The discussion of these two models and their expectad sguares may look as if it is designed
to bury the solution to a practical problem (comparing @feteans) under a mountain of
statistical theory. However, it is important to aplanation of how we will run our analyses and

where our tests come from. You'll need to bear withomly a little longer.



14.2. F RATIOS

The expected mean squares in Table 14.2 indicate thatathel we adopt influences the
ratios we employ. If we are willing to assume thatréhis no Subject x Treatment interaction,

we can form the following ratios:

E(Msbmremsd:-j) _ O‘f +£:le
E(MS.,) o

4

B{MSes) _ o +286;
a

Given an additional assumption about sphericity, whiehwml discuss in the next section, both

of these lead to respectalfleatios that can be used to test the relevant nullthgses.

Usually, however, we are cautious about assuminghibag is no Subject x Treatment
interaction. In much of our research it seems maasaable to assume that different subjects
will respond differently to different treatments, esplg when those “treatments” correspond to
phases of an ongoing experiment. As a result we uguafgr to work with the more complete

model.

The full model (which includes the interaction term)die#o the following ratios:

E{Msbmm;l.t.j) 3 O‘f -|—kaf
E(MS) O+,

and



Although the resultingr for treatments is appropriate, thdor subjects is biased. If we did form
this latter ratio and obtained a signific&itwe would be fairly confident that subject differences

really did exist. However, if thE were not significant, the interpretation would be agubus. A

nonsignificant~ could mean either th%l?f =Uor thatgmi =0but = ‘jix. Because we usually
prefer this second model, and hate ambiguity, we seldorthiesffect due to Subjects. This

represents no great loss, however, since we haleetditgain by testing the Subject effect. The

main reason for obtaininsgsbmmmbj in the first place is to absorb the correlationsveen
treatments and thereby remove subject differencestierarror term. A test on the Subject
effect, if it were significant, would merely indicateat people are different—hardly a

momentous finding. The important thing is that both underlyiogels show that we can

useM = as the denominator to test the effect of treatments.

14.3. THE COVARIANCE MATRIX

A very important assumption that is required for Bmatio in a repeated-measures design to be

distributed as the central (tablefl)s that of compound symmetry of the covariance m&triro

understand what this means, consider a mafi’yrepresenting the covariances among the three

treatments for the data given in Table 14.1.



| 4 4 4
A 115467 160,00 160,00

A, | 16000 17667 17067
A | 16000 17067 170,00

T=

-
On themain diagonal of this matrix are the variances within each treatr(léﬁt). Notice that

they are all more or less equal, indicating that we naetthe assumption of homogeneity of

variance. Theff-diagonal elements represent the covariances among the treatments

(5OV1z, oWy, and coviz) Notice that these are also more or less equal. féidteéhat they are

also of the same magnitude as the variances is iamatiereflecting merely the very high
intercorrelations among treatments.) A pattern of @onis/ariances on the diagonal and constant
covariances off the diagonal is referred t@@apound symmetry. (Again, the relationship

between the variances and covariances is irreleveim. assumption of compound symmetry of

the (population covariance matrix (), of which % is an estimate, represents a sufficient
condition underlying a repeated-measures analysis ofhaid he more general condition is
known assphericity, and you will often see references to that broadrrmagtion. If we have
compound symmetry we will meet the sphericity assumpbanit is possible, though not likely
in practice, to have sphericity without compound symmé@jder textbooks generally make
reference to compound symmetry, even though that is icbatrassumption. In recent years
the trend has been toward reference to “sphericayg’ that is how we will generally refer to it
here, though we will return to compound symmetry whenavisider mixed models at the end
of this chapter.) Without this sphericity assumptidwe,R ratios may not have a distribution
given by the distribution df in the tables. Although this assumption applies to aalyais of

variance design, when the cells are independent ttegiaoges are always zero, and there is no



problem—we merely need to assume homogeneity of vari&ivite repeated-measures designs,
however, the covariances will not be zero and we he@assume that they are all equal. This has
led some people (e.g., Hays, 1981) to omit serious consateddtrepeated-measures designs.
However, when we do have sphericity, feeare valid; and when we do not, we can use either
very good approximation procedures (to be discussed lat@isioitapter) or alternative methods
that do not depend on assumptions abaudne alternative procedure that does not require any
assumptions about the covariance matrixngltivariate analysis of variance (MANOVA).

This is amultivariate procedure, which is essentially one that deals with multiple celest
variables simultaneously. This procedure, however, reqoineplete data and is now

commonly being replaced by analyses of mixed models, whichmmoduced in Section 14.12.

Many people have trouble thinking in terms of covarianeesibse they don’t have a simple
intuitive meaning. There is little to be lost by thinkimgerms of correlations. If we truly have

homogeneity of variance, compound symmetry reduces &taitrcorrelations between trials.

14.4. ANALYSISOF VARIANCE APPLIED TO RELAXATION THERAPY

As an example of a simple repeated-measures designillveengider a study of the
effectiveness of relaxation techniques in controlling aiigg headaches. The data described here
are fictitious, but they are in general agreement daitta collected by Blanchard, Theobald,

Williamson, Silver, and Brown (1978), who ran a simiithough more complex, study.



In this experiment we have recruited nine migraine sufexad have asked them to record the
frequency and duration of their migraine headaches. Afteeeks of baseline recording during
which no training was given, we had a 6-week period okatian training. (Each experimental
subject participated in the program at a different timesusi things as changes in climate and
holiday events should not systematically influencedduz.) For our example we will analyze

the data for the last 2 weeks of baseline and the laseRs of training. The dependent variable
is the duration (hours/week) of headaches in each séthaveeks. The data and the calculations

are shown in Table 14/4.1t is important to note that | have identified theams with a subscript

naming the variable. Thus instead of using the standard “ddtamstée.qg., x4 for the Week
means), | have used the letter indicating the variadoheenas the subscript (e.g., the means for

Weeks are denoted  and the means for Subjects are denoteg As usual, the grand mean

is denotedX _, andX represents the individual observations.

Table 14.3 Analysis of data on migraine headaches.

(a) Data
Baseline Training
Subject Week1l Week2 Week3 Week4 Week5  Subject
Means
1 21 22 8 6 6 12.6
2 20 19 10 4 4 11.4
3 17 15 5 4 5 9.2
4 25 30 13 12 17 19.4
5 30 27 13 8 6 16.8
6 19 27 8 7 4 13.0
7 26 16 5 2 5 10.8
8 17 18 8 1 5 9.8
9 26 24 14 8 9 16.2

Week 22.333 22.000 9.333 5.778 6.778 13.244
Means




(b) Calculations

Sy = Z( X - ]=(21 13.244) +...+(9 - 13.244)" =3166.31
S = wE( T — XY =5 (12613244 +_ +(16.2-13 244)" | = 48671

Sy =15 (Zp-X ) = 9[(22.333— 13.244)" + . +(6.778 - 13.244}"} = 2449 20

L
B gy = O gy O e~ e = 31663148671 2445 20 = 230 40

wereks

(c) Summary table

Source df SS MS F
Between subjects 8 486.71
Within subjects 36 2679.60 85.04*
Weeks 4 2449.20 612.30
Error 32 230.40 7.20
Total 44 3166.31
*p<.05

Look first at the data in Table 14.3a. Notice that tiheeegreat deal of variability, but much of
that variability comes from the fact that some pedylee more and/or longer-duration
headaches than do others, which really has verytlittt with the intervention program. As |

have said, what we are able to do with a repeated-meaksign but were not able to do with

between-subjects designs is to remove this variabititrylfﬁsmr, producing a smalldf=urx

than we would otherwise have.

From Table 14.3b you can see thate is calculated in the usual manner. Similaﬁﬁmﬁjem

and> wess are calculated just as main effects always are ftakeum of the squared deviations

from the grand mean and multiply by the appropriate cangta., the number of observations



contributing to each mean)]. Finally, the error termabgsained by subtractinasﬂnjem and

S S eds from

S S

The summary table is shown in Table 14.3c and looks aff@itefit from ones you have seen
before. In this table | have made a deliberate spbt Batween-Subject factors and Within-
Subject factors. The terms for Weeks and Error are pathe Within-Subject term, and so are
indented under it. (In this design the Between-Subject factart further broken down, which is
why nothing is indented under it. But wait a few pages and ylbsee that happen too.) Notice

that | have computed d&nfor Weeks but not for subjects, for the reasons geagter. The-

value for Weeks is based on 4 and 32 degrees of freedorﬁgﬁ&ﬁdaz] =268 We can
therefore rejecHy: 4, = #,= ... = #5and conclude that the relaxation program led to a
reduction in the duration per week of headaches reportsddpgcts. Examination of the means
in Table 14.3 reveals that during the last three weeksioirig, the amount of time per week

involving headaches was about one-third of what it wasiguraseline.

You may have noticed that no Subject x Weeks interaitishown in the summary table. With
only one score per cell, the interaction tesrthe error term, and in fact some people prefer to
label it S x Winstead of error. To put this differently, in the destliscussed here it is
impossible to separate error from any possible Subjecéek¥vinteraction, because they are
completely confounded. As we saw in the discussiatrattural models, both of these effects,

if present, are combined in the expected mean squarador er



| spoke earlier of the assumption of sphericity, angound symmetry. For the data in the

example, the variance—covariance matrix follows, regmeed by the notatidh, where the * is

used to indicate that this is an estimate of the ptipulaariance—covariance matuix

21.000 11.750 9.250 7.833 7.333
11.750 28.500 13.750 16.375 13.375
9.250 13.750 11.500 8.583 8.208
7.833 16.375 8.583 11.694 10.819
7.333 13.375 8.208 10.819 16.945

=3
I

Visual inspection of this matrix suggests that the mgsion of sphericity is reasonable. The
variances on the diagonal range from 11.5 to 28.5, wherea®variances off the diagonal
range from 7.333 to 16.375. Considering that we have only nbjects, these values represent
an acceptable level of constancy. (Keep in mind thatdhances do not need to be equal to the
covariances; in fact, they seldom are.) A statiktiest of this assumption of sphericity was
developed by Mauchly (1940) and is given in Winer (1971, p. 596putd in fact show that

we have no basis for rejecting the sphericity hypash&ox (1954b), however, showed that

regardless of the form §f, a conservative test on null hypotheses in the repeatedures

(L2 —1) _ihat is, by acting as though

analysis of variance is given by compariﬁgt againsfF 05
we had only two treatment levels. This test is excegylitonservative, however, and for most
situations you will be better advised to evaluata the usual way. We will return to this

problem later when we consider a much better soldtiand in Greenhouse and Geisser’s

(1959) extension of Box’s work.



As already mentioned, one of the major advantages oéfieated-measures design is that it
allows us to reduce the error term by using the same siitjeadt treatments. Suppose for a

moment that the data illustrated in Table 14.3 had actbeéy produced by five independent
groups of subjects. For such an analyé%pcr would equal 717.11. In this case, we would not

be able to pull out a subject term becatiSemeastiwould be synonymous withiPw (A

subject total and an individual score are identical.) Aesalt, differences among subjects would
be inseparable from error, and in fatt= would be the sum of what, for the repeated-measures

design, aré® .z and SS'mtwmbj( =230.4 + 486.71 = 717.11 on 32 + 8 =4 This would lead

to

oo MSy,, 61230

MS 1793

(e g

=34.15

which, although still significant, is less than one-ladilfvhat it was in Table 14.3.

To put it succinctly, subjects differ. When subjectsaserved only once, these subject
differences contribute to the error term. When subjant observed repeatedly, we can obtain an
estimate of the degree of subject differences andaptrése differences out of the error term. In
general, the greater the differences among subjecthigher the correlations between pairs of
treatments. The higher the correlations among treatnére greater the relative power of

repeated-measures designs.

We have been speaking of the simple case in which we d@e independent variable (other
than subjects) and test each subject on every levbab¥ariable. In actual practice, there are

many different ways in which we could design a study uspegated measures. For example,



we could set up an experiment using two independent varaidetest each subject under all
combinations of both variables. Alternatively, each subjaght serve under only one level of
one of the variables, but under all levels of the otliere had three variables, the possibilities
are even greater. In this chapter we will discuss arigw of the possible designs. If you
understand the designs discussed here, you should hakffiadty generalizing to even the

most complex problems.

14.5. CONTRASTSAND EFFECT SIZESIN REPEATED MEASURES

DESIGNS

As we did in the case of one-way and factorial desyespeed to consider how to run contrasts
among means of repeated measures variables. Fortureedyid not really much that is new
here. We will again be comparing the mean of a canir set of conditions against the mean
of another condition or set of conditions, and wk & using the same kinds of coefficients that

we have used all along.

In our example the first two weeks were Baseline meagsarel the last three weeks were
Training measures. Our omnibkbgold us that there were statistically significanfefénces
among the five Weeks, but not where those differeneedlbw | would like to contrast the
means of the set of Baseline weeks with the mealnecdét of Training weeks. The coefficients

that will do this are shown below, along with the means



Week 1 Week 2 Week 3 Week 4 Week 5

Coefficient 1/2 1/2 -1/3 -1/3 -1.3

Mean 22.333 22.000 9.333 5.778 6.778

Just as we have been doing, we will define our contrast as

4= mi"?i
=($)(22.333)+{ 1) (22,0003 +{- 1){9.333) +(- D) (5.778) +(- 1) [6.778)
_ 22333422000 9333+45778+6778 _ 44333 21889

2 3 2
=14.5870

=22 1667296

We can test this contrast with eitherr@ anF, but | will uset here. F is just the square of)

io & __ 14870 14870 14870 ...,
\[[mf]mm \/0.833[?.20) JO667 0816
;. 9
b

This is at on dt.or =32 df, and is clearly statistically significant.

Notice that in calculating miyl used the M§.r from the overall analysis. And this was the same
error term that was used to test the Weeks effectint gmat out only because when we come to
more complex analyses we will have multiple erromie and the one to use for a specific

contrast is the one that was used to test the maantedf that independent variable.

Effect sizes

Although there was a direct translation from one-@agigns to repeated measures designs in
terms of testing contrasts among means, the situigt@ibit more complicated when it comes to

estimating effect sizes. We will continue to define dtecat size as



There should be no problem with, because it is the same contrast that we compute@-abov
the difference between the mean of the baseline warekshe mean of the training weeks. But
there are several choices ®fo. Kline (2004) gives 3 possible choices for our denominator, but

points out that two of these are unsatisfactory elbkeause they ignore the correlation between

weeks or because they standardfféday a standard deviation that is not particularly meaningfu
What we will actually do is create an error term thatnique to the particular contrast. We will
form a contrast for each subject. That means thagdoh subject we will calculate the difference
between his mean on the baseline weeks and his mehga training weeks. These are
difference scores, which are analogous to the differecoees we computed for a paired sample
t test. The standard deviation of these difference sasm@nalogous to the denominator we
discussed for computing effect size with paired data whejust had two repeated measures
with thet test. It is important to note that there is room fguanent about the proper term to use

to standardize contrasts with repeated measures. See(R004) and Olejnik & Algina (2000).

For our migraine example the first subject would have armdiffce score of (21 + 22)/2 — (8 + 6
+6)/3 =21.5-6.667 = 14.833. The complete set of differemresevould be

[14.833, 13.500, 11.333, 13.500, 19.500, 16.667, 17.000, 12.833, 14.667]

The mean of these difference scores is 14.879, whi¢h iBhe standard deviation of these

difference scores is 2.49. Then our effect size measure

Go W 1487 oo
: 249

oy



This tells us that the severity of headaches duringlinasis nearly 6 standard deviations greater
than the severity of head aches during training. Thavésyalarge difference, and we can see
that just by looking at the data. Remember, in calmdatis effect size we have eliminated the
variability between participants (subjects) in termbeddache severity. We are in a real sense

comparing each individual to him/her self.

14.6. WRITING UP THE RESULTS

In writing up the results of this experiment we could dyngay
To investigate the effects of relaxation therapy @ngdwverity of migraine headaches, 9
participants rated the severity of headaches on eaglooféeks before receiving
relaxation therapy and for three weeks while receiviegapy. An overall analysis of
variance for repeated measures showed a significaatatite between weels(4,32) =
85.04,p < .05). The mean severity rating during baseline weeks was&,2vhich
dropped to a mean of 7.296 during training, for a differendel&7. A contrast on this
difference was significant(32) = 18.21p < .05). Using the standard deviation of
contrast differences for each participant produced antefize measure af= 5.97,

documenting the importance of relaxation therapy iating migraine headaches.

14.7. ONE BETWEEN-SUBJECTSVARIABLE AND ONE WITHIN-

SUBJECTSVARIABLE

Consider the data presented in Table 14.4. These are datadfom a study by King (1986).

This study in some ways resembles the one on morpHerance by Siegel (1975) that we



examined in Chapter 12. King investigated motor activity s f@lowing injection of the drug
midazolam. The first time that this drug is injectedypically leads to a distinct decrease in
motor activity. Like morphine, however, a tolerance fadamolam develops rapidly. King
wished to know whether that acquired tolerance could baiegal on the basis ofcanditioned
tolerance related to the physical context in whichdifugy was administered, as in Siegel's work.
He used three groups, collecting the crucial data (presenieable 14.4) on only the last day,
which was the test day. During pretesting, two groups of asimaile repeatedly injected with
midazolam over several days, whereas the Control gmaspnjected with physiological saline.
On the test day, one group—the “Same” group—was injectedmitazolam in thesame
environment in which it had earlier been injected. Thefddént” group was also injected with
midazolam, but in differentenvironment. Finally, the Control group was injected with
midazolam for the first time. This Control group shotids show the typical initial response to
the drug (decreased ambulatory behavior), whereas the §ap should show the normal
tolerance effect—that is, they should decrease #Hutivity little or not at all in response to the
drug on the last trial. If King is correct, howeveg Different group should respond similarly to
the Control group, because although they have had sexgadures to the drug, they are
receiving it in a novel context and any conditionedreoiee that might have developed will not
have the necessary cues required for its elicitaliba.dependent variable in Table 14.4 is a
measure of ambulatory behavior, in arbitrary units. Agde first letter of the name of a

variable is used as a subscript to indicate what seeahs we are referring to.



Table 14.4 Ambulatory behavior by Group and Trial

(a) Data
Interval
1 2 3 4 5 6 Mean
Control 150 44 71 59 132 74 88.333
335 270 156 160 118 230 211.500
149 52 91 115 43 154 100.667
159 31 127 212 71 224 137.333
159 0 35 75 71 34 62.333
292 125 184 246 225 170 207.000
297 187 66 96 209 74 154.833
170 37 42 66 114 81 85.000
Mean 213.87593.250 96.500 128.625122.875 130.125 130.875
Same 346 175 177 192 239 140 211.500
426 329 236 76 102 232 233.500
359 238 183 123 183 30 186.000
272 60 82 85 101 98 116.333
200 271 263 216 241 227 236.333
366 291 263 144 220 180 244.000
371 364 270 308 219 267 299.833
497 402 294 216 284 255 324.667
Mean 354.625 266.250 221.000 170.000 198.625 178.625 231.521
Different 282 186 225 134 189 169 197.500
317 31 85 120 131 205 148.167
362 104 144 114 115 127 161.000
338 132 91 77 108 169 152.500
263 94 141 142 120 195 159.167
138 38 16 95 39 55 63.500
329 62 62 6 93 67 103.167
292 139 104 184 193 122 172.333
Mean 290.12598.250 108.500109.000 123.500 138.625 144.667

Interval 286.208 152.583 142.000 135.875 148.333 149.125 169.021

mean




(b) Calculations

e = 2{X -2 Y = (150-160.021)" +. + (122-169.021)" = 1,432,292.9

b

S8,y =iZ(X-X.) = 6[(88.333—169.021}2 +...+{172.333—169.021ﬂ= 670,537.1

38 e = L[ X - XY =8><6[[130_8?5—169.021]2+...+[144.66?—169.I321}1= 2%5,815.0
z

Sy =n2( Xy - X ) = 8[[213.3?5—169.[:121}2 L +{138.625- 169.021}2] =766,371.5
S8 = ey~ Spenar —

o EHANES

=766,371.5- 285 815.0-3537736 5= 80,820.0

(c) Summary Table

Source df SS MS F
Between subjects 23 670,537.1
Groups 2 285,815.0 142,907.5 7.80*
Ss w/in groups** 21 384,722.0 18,320.1
Within subjects** 120 761,755.8
Intervals 5 399,736.5 79,947.3 29.85*
Ix G 10 80,820.0 8,082.0 3.02*
| x Ss w/in groups** 105 281,199.3 2,678.1
Total 143 1,432,292.9

* p <.05; ** Calculated by subtraction

Because the drug is known to be metabolized over a pefrplproximately 1 hour, King
recorded his data in 5-minute blocks, or Intervals. We wexiibct to see the effect of the drug
increase for the first few intervals and then slotalyer off. Our analysis uses the first six blocks

of data. The design of this study can then be represdidgrammatically as



Teotal wariation

e hS

Between subiects TWithin subiects
g e whin I I=G I =58 wiin
(Groups) Groups (Interwvals) Groups

Here we have distinguished those effects that repregérences between subjects from those
that represent differences within subjects. When weidenthe between-subjects term, we can
partition it into differences between groups of subje@)sand differences between subjects in
the same grou@6 w/in groups). The within-subject term can similarlysbédivided into three
components—the main effect of Intervals (the repeatexsune) and its interactions with the
two partitions of the between-subject variation. Yod ggle this partitioning represented in the

summary table when we come to it.

Partitioning the between-subjects effects



Let us first consider the partition of the between-scisj term in more detail. From the design of
the experiment, we know that this term can be pargtianto two parts. One of these parts is the
main effect of Groups3), since the treatments (Control, Same, and Diff¢riemolve different
groups of subjects. This is not the only source of diffeeer@eanong subjects, however. We have
eight different subjects within the control group, andedéhces among them are certainly
between-subjects differences. The same holds fasuhgcts within the other groups. Here we

are speaking of differences among subjects in the gemgp—that isSs within groups.

If we temporarily ignore intervals entirely (e.g., sieply collect our data over the entire
session rather than breaking it down into 5-minute iatgjywe can think of the study as

producing the following data:

Control Same Different
88.333 211.500 197.500
211.500 233.500 148.167
100.667 186.000 161.000
137.333 116.333 152.500
62.333 236.333 159.167
207.000 244.000 63.500
154.833 299.833 103.167
85.000 324.667 172.333
130.875 231.521 144.667

where the “raw scores” in this table are the subjeetnmmdérom Table 14.4. Because each subject
is represented only once in these totals, the analgsisill apply here is the same as a one-way
analysis of variance on independent groups. Indeed, exaepicbnstant representing the
number of scores per subject (which cancels out in the #red3ums of squares for the simple

one-way on these data would be the same as those actinal analysis. THethat tests the



main effect of Groups if this were a simple one-wayobject totals would be equal to the one
that we will obtain from the full analysis. Thus, thetween-subjects partition of the total

variation can be seen as essentially a separatgsanaf variance, with its own error term

(sometimes referred to &5 Mhawen ) independent of the within-subject effects.

Partitioning the within-subjects effects

Next consider the within-subjects element of the partiaf SSem, As we have already seen,
this is itself partitioned into three terms. A comparisbthe six intervals involves comparisons
of scores from the same subject, and thus Intervalsvithin-subjects term—it depends on
differences within each subject. Since Intervalswsthin-subjects term, the interaction of

Intervals with Groups is also a within-subjects eff@tte third term (Intervals & within
groups) is sometimes referred to®a§™ e since it is the error term for the within-subjects

effects. The> sumis swingses term is actually the sum of the sums of squares ®lIr #5
interactions calculated separately for each group. Thean be seen as logically equivalent to

the error term used in the previous design.

The analysis

Before considering the analysis in detall, it is instugctd look at the general pattern of results.
Although there are not enough observations in eacthocekamine the distributions in any

serious way, it is apparent that on any given inteneaktis substantial variability within groups.



For example, for the second interval in the controligt scores range from 0 to 270. There do
not appear to be any extreme outliers, however, as béepens in this kind of research, and the
variances within cells, although large, are approximaeiial. You can also see that there are
large individual differences, with some of the anin@aasistently showing relatively little
ambulatory behavior and some showing a great deal. Binegbe kinds of differences that will
be partialled out by our analysis. Looking at the Intemva&ns, you will see that, as expected,
behavior decreased substantially after the first 5-mimtéeval and then increased slightly
during the rest of the session. Finally, looking at tiferénce between the means for the
Control and Same groups, you will see the anticipatechtude effect, and looking at the
Different group, you see that it is much more like that@u group than it is like the Same

group. This is the result that King predicted.

Very little needs to be said about the actual calculatio Table 14.4b, since they are really no
different from the usual calculations of main and intBoa effects. Whether a factor is a
between-subjects or within-subjects factor has no bearirtge calculation of its sum of
squares, although it does affect its placement in thersury table and the ultimate calculation

of the corresponding.

In the summary table in Table 14.4c, the source coluntectefthe design of the experiment,

with =St first partitioned iNtQ eeeeemeti and = wimei. Each of these sums of squares is further

subdivided. The double asterisks next to the three tdraw we calculate these by subtraction

(stmmbi, SS&wmws, andSSfom'irms), based on the fact that sums of squares are additive

and the whole must be equal to the sum of its parts.sithiglifies our work considerably. Thus



SSv.v‘mg_ﬂ:j = S SSmesmj
SSst.i'imgmps = Ssbemmmj_ Sng.ps

SSIxst.filgmps = st‘hsulzgi_ S Sl ~ O g

These last two terms will become error terms forathalysis.

The degrees of freedom are obtained in a relativelygstifarward manner. For each of the main
effects, the number of degrees of freedom is equal touhmer of levels of the variable minus
1. Thus, for Subjects there are 24 - 1 =d@3or Groups there are 3 - 1 =g, and for Intervals

there are 6 - 1 = 8f. As for all interactions, thdf for | x G is equal to the product of thi for

the component terms. Thtféfﬁ? =(6-D(-1)= 10 The easiest way to obtain the remaining

degrees of freedom is by subtraction, just as we didthéltorresponding sums of squares.

dfm;:bj = dfml - dj;:-mremgzbj
desw‘hgmps = dfmmm - dfgm.ps
dffoﬁ“ﬁLgmps = dfw‘hm}:ﬂ - fffi«m - fff:t?

Thesedf can also be obtained directly by considering what ttexses represent. Within each

subject, we have 6 - 1 =db. With 24 subjects, this amounts(@{zdﬂ =120 dfmans | Within

each level of the Groups factor, we have 8 - 1df etween subjects, and with three Groups we

have[?)(B) =21 dfamgups | x Ss wiin groups is really an interaction term, and as #sd is

simply the product of's and¥ s win gops = [5)(21) = 105

Skipping over the mean squares, which are merely the susguares divided by their degrees
of freedom, we come tb. From the column df it is apparent that, as we anticipated, Groups

and Intervals are significant. The interaction i®agnificant, reflecting, in part, the fact that



the Different group was at first intermediate betwdenSame and the Control group, but that by
the second 5-minute interval it had come down to be equlétGontrol group. This finding can
be explained by a theory of conditioned tolerance. €aéyrinteresting finding is that, at least

for the later intervals, simply injecting an animakin environment different from the one in
which it had been receiving the drug was sufficient to @vee the tolerance that had
developed. These animals respond almost exactly as dolatiaahad never experienced

midazolam. We will return to the comparison of Groupsdividual Intervals later.

Assumptions

For theF ratios actually to follow th€& distribution, we must invoke the usual assumptions of

normality, homogeneity of variance, and sphericitﬁofFor thebetween-subjecterm(s), this
means that we must assume that the variance of sutgams within any one level of Group is
the same as the variance of subject means within eteey level of Group. If necessary, this

assumption can be tested by calculating each of tleneas and testing using

eitherfaum o8 (g7 'l)dfor, preferably, the test proposed by Levene (1960) or O'Bti@81),
which were referred to in Chapter 7. In practice, howdheranalysis of variance is relatively
robust against reasonable violations of this assumfaes Collier, Baker, and Mandeville,
1967; and Collier, Baker, Mandeville, and Hayes, 1967). Bechasgroups are independent,
compound symmetry, and thus sphericity, of the covariaratexis assured if we have

homogeneity of variance, since all off-diagonal estwill be zero.



For thewithin-subjectderms we must also consider the usual assumptionsyaddeneity of
variance and normality. The homogeneity of variansgmagption in this case is that the S

interactions are constant across the Groups, andabane this can be tested

using e o0 g and (»-1){i-1)

af (You would simply calculate dnx Sinteraction for each
group—equivalent to the error term in Table 14.3—and test thedbagainst the smallest.) For

the within-subjects effects, we must also make assangtoncerning the covariance matrix.

There are two assumptions on the covariance matroétrices). Again, we will let:

represent the matrix of variances and covariancesi@itine levels of (Intervals). Thus with

six intervals,

l1 P I3 l4 Is 16
011 2P 013 014 a5 T 16
- - - - - -
o1 T o3 o4 T og T g

L= 31 3o {33 T3y T35 T 36
T4 T 043 44 45 T 46
51 5o 53 sy Tsg Tse
Te1 Te T 63 T4 Tes5 T 66

For each Group we would have a separate population verieoeariance matri%a . (& and

Za are estimated bﬁ and &, respectively.) FoMPxswmszoz: to be an appropriate error

term, we will first assume that the individual vadarcovariance matricegé‘a) are the same



for all levels ofG. This can be thought of as an extension (to covariaidéése common

assumption of homogeneity of variance.

The second assumption concerning covariances deals witdvéhnall matrix>, whereX' is the
pooled average of thes . (For equal sample sizes in each group, an entywml be the

average of the corresponding entries in the indivio":u?almatrices.) A common and sufficient,
but not necessary, assumption is that the matrix eglgbitnpound symmetry—meaning, as |
said earlier, that all the variances on the maigahal are equal, and all the covariances off the
main diagonal are equal. Again, the variances do nottoasgual the covariances, and usually
will not. This assumption is in fact more stringerartiecessary. All that we really need to

assume is that the standard errors of the differdmet@geen pairs of Interval means are

constant—in other words, th%%-?v is constant for all andj (j #1). This sphericity requirement

is met automatically it exhibits compound symmetry, but other patterns will also have this
property. For a more extensive discussion of the cavegiassumptions, see Huynh and Feldt
(1970) and Huynh and Mandeville (1979); a particularly good digmusan be found in

Edwards (1985, pp. 327-329, 336—339).
Adjusting the degr ees of freedom

Box (1954a) and Greenhouse and Geisser (1959) consideredettis effdeparture from this
sphericity assumption oxi. They showed that regardless of the formy ptheF ratio from the

within-subjects portion of the analysis of varianc# be approximately distributed &son



(-1 gn-1)0 - 1e

df for the Interval effect and

(9-1)@ -1k g(n-1)( - 1k

df for thel x G interaction, where = the number of intervals amrds estimated by

()
I '5'_,1}' g

(- NZ-are )

E=

Here,

Fy = themean of the entries on the main diagonal of

7= the mean of all entriesin &
&y = the jith entry in j)

5; = the mean of all entries in the jth row of &

The effect of using is to decrease botHsex andrx from what they would normally be.
Thus£ is simply the proportion by which we reduce them. Greasb and Geisser

recommended that we adjust our degrees of freedom &siflaey further showed that when the
sphericity assumptions are met; 1, and as we depart more and more from sphericity,

approaches 1/¢ 1) as a minimum.

There is some suggestion that for large values @fen using'to adjust the degrees of freedom

can lead to a conservative test. Huynh and Feldt (1976 tip&tsd this correction and

recommended a modification £¥vhen there is reason to believe that the true valadies near

or above 0.75. Huynh and Feldt, as later corrected byutee(1991) defined



(N-g+D(i-1)&-2

(i- [ W-g-(i-1)¢]

whereN =n x g. (Chen and Dunlap (1994) later confirmed Lecoutre’s cormettidhe original

g =

Huynh and Feldt formul&! )We then us £or &, depending on our estimate of the true value of

(Under certain circumstanc &;will exceed 1, at which point it is set to 1.)

A test on the assumption of sphericity has been dpgdlby Mauchly (1940) and evaluated by
Huynh and Mandeville (1979) and by Keselman, Rogan, Mendod&8raen (1980), who point
to its extreme lack of robustness. This test is av&lahlSPSS, SAS, and other software, and is
routinely printed out. Because tests of sphericityliaedy to have serious problems when we

need them the most, it has been suggested thalwagsuse the correction to our degrees of

freedom afforded b§or &, whichever is appropriate, or use a multivariate proceduoe

discussed later. This is a reasonable suggestion and otreagopting.

For our data, th€ value for IntervalsK = 29.85) is such that its interpretation would be the
same regardless of the valuesp$ince the Interval effect will be significant evien the lowest
possibledf. If the assumption of sphericity is found to be invalidybwer, alternative treatments
would lead to different conclusions with respect toltRes interaction. For King's data, the
Mauchly’s sphericity test, as found from SPSS, inde#tat the assumption has been violated,

and therefore it is necessary to deal with the prolbésulting from this violation.

We can calculatéand# and evaluat& on the appropriatéf. The pooled variance—covariance

matrix (averaged across the separate matrices) ispedse Table 14.5. (I have not presented



the variance—covariance matrices for the several grioegeuse they are roughly equivalent and

because each of the elements of the matrix is basedly eight observations.)

From Table 14.5 we can see that our value & ahc & are .6569 and .7508, respectively. Since
these are in the neighborhood of .75, we will follow hlnyand Feldt’'s suggestion and &sén
this case, the degrees of freedom for the interact®n a

(g-1)G - 1)(.7508) = 7.508
and

g(n-1)( - 1)(.7508) = 78.834

The exact critical value < (7.508,78.834)is 2'09, which means that we will reject the null
hypothesis for the interaction. Thus, regardless of aolyl@ms with sphericity, all the effects in

this analysis are significant. (They would also be Sicamt if we use & instead c £.)

Table 14.5 Variance-covariance matrix and calculation®and &

Interval
1 2 3 4 5 6 Mean

6388.173 4696.226 2240.143 681.649 2017.726 1924.066 2991.330
4696.226 7863.644 4181.476 2461.702 2891.524 3531.869 4271.074
2240.143 4181.476 3912.380 2696.690 2161.690 3297.762 3081.690
681.649 2461.702 2696.690 4601.327 2248.600 3084.589 2629.093
2017.726 2891.524 2161.690 2248.600 3717.369 989.310 2337.703
1924.066 3531.869 3297.762 3084.589 989.310 5227.649 3009.208




5y = 6388.1?3+?863.6644...+522?.649 _ 5995 090
o BIEE TTEHA606 226+ 4+ 980 31045227 649
26

Tsd, = 6388.173 +4696.2267 +. +5227.649% = 416,392,330

=3053.350

o) = 2991 330° +  +3009.208% = 58,119,260
.2 _____ 2
- I (S.ﬂ S)

E=
(- 1){ 5, - 25 475 )

B 36(5285.090 - 3053.350Y"
- (6-1)[ 416,392,330 2)( 6)(58.119, 260)+ (36) (3053.350%) |

_ 179,303,883
~ 5[416,392,330 — 637,431,120 +335,626,064]

= 06565

(N— g+1){1 ]

-3l-56-17]

(24— 3+1}{ }(0 6569)-2 70259
© 5[24-3-5(0.6569) | 935775

&=

7508

Simple effects

The Interval x Group interaction is plotted in Figure 1#h2;interpretation of the data is
relatively clear. It is apparent that the Same grougistantly performs above the level of the
other two groups—that is, the conditioned tolerance to zoidan leads to greater activity in that
group than in the other groups. It is also clear thatigcdecreases noticeably after the first 5-
minute interval (during which the drug is having its greatdetgf The interaction appears to be
produced by the fact that the Different group is interatedbetween the other two groups
during the first interval, but it is virtually indistingiiable from the Control group thereafter. In

addition, the Same group continues declining until at Estourth interval, whereas the other



two groups drop precipitously and then level off. Simptea$ will prove useful in interpreting
these results, especially in terms of examining group diffsgs during the first and the last
intervals. Simple effects will also be used to testifferences between intervals within the
Control group, but only for purposes of illustration—kbsld be clear that Interval differences

exist within each group.

Marginal Means of Activity
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Figure 14.2 Intervalx Group interaction for data from Table 14.4

As | have suggested earlier, the Greenhouse and Geisstieaddynh and Feldt adjustments to
degrees of freedom appear to do an adequate job of corristimgpblems with the sphericity
assumption when testing for overall main effects @ranttions. However, a serious question
about the adequacy of the adjustment arises when weleomsthin-subjects simple effects

(Boik, 1981, Harris, 1985). The traditional approach to tesimgle effects (see Howell, 1987)



involves testing individual within-subjects contrasts agaansboled error ternMer&wmw ).
If there are problems with the underlying assumption, tintg éerm will sometimes
underestimate and sometimes overestimate what woulcelprdper denominator fé, playing
havoc with the probability of a Type | error. For thesison we are going to adopt a different,

and in some ways simpler, approach.

The approach we will take follows the advice of Boik thaeparate error term be derived for
each tested effect. Thus, when we look at the sinffdetef Intervals for the Control condition,
for example, the error term will speak specificallyhat effect and will not pool other error

terms that apply to other simple effects. In other watdgill be based solely on the Control
group. We can test the Interval simple effects quatalye by running separate repeated-measures
analyses of variance for each of the groups. For exama can run a one-way repeated-
measures analysis on Intervals for the Control grasigliscussed in Section 14.4. We can then
turn around and perform similar analyses on Intervalghi®iSame and Different groups

separately. These results are shown in Table 14.6chaase the Interval differences are

significant, even after we correct the degrees ofifseeusing® or #, whichever is appropriate.

Table 14.6 Calculation of within-subjects simple effects foralibm King (1986)

(a) Interval at Control

Source df SS MS F
Between subjects 7 134,615.58

Interval 5 76,447.25 15,289.45 5.69*
Error 35 93,998.42 2685.67

Total 47 305,061.25




*p<.05; & =.404; & = .570

(b) Interval at Same

Source df SS MS F
Between subjects 7 175,600.15

Interval 5 193,090.85 38,618.17 11.10*
Error 35 121,714.98 3477.57

Total a7 490,405.98

*p<.05; & = .578;& =1.00

(c) Interval at Different

Source df SS MS F
Between subjects 7 74,506.33

Interval 5 211,018.42 42,203.68 22.56*
Error 35 65,485.92 1871.03

Total 47 351,010.67

*p<.05; £ =.598;# = 1.00

If you look at the within-subject analyses in Table 1404y will see that the average-szx is

(2685.669 + 3477.571 + 1871.026)/3 = 2678.089, whicfg-¢wmzaz from the overall
analysis found on page xxx. Here these denominators fét itaigos are noticeably different

from what they would have been had we used the pooledwdrict) is the traditional approach.

You can also verify with a little work that tHé reem terms for each analysis are the same as
those that we would compute if we followed the usual proesdior obtaining simple effects

mean squares.

For the between-subjects simple effects (e.g., Gratpgerval 1) the procedure is more

complicated. Although we could follow the within-subjectaeple and perform separate



analyses at each Interval, we would lose considedsgeces of freedom unnecessarily. Here it

is usually legitimate to pool error terms, and it isegafly wise to do so.

For this example we will examine the simple effedt&mup at Interval 1 and Group at Interval
6. The original data can be found in Table 14.4 on page xxxsuine of squares for these

effects are

856 ane 1= 8[{213_8?5— 286 208" +(354.625— 286 208)" +{290.125- 286 208)°

L1

=77%,426.35

555 are o = 8] (130.125- 149 125)" +(178 625-149 125} + (138,625 149 125)" | =10,732.00

Testing the simple effects of between-subjects tesradittle trickier. Consider for a moment
the simple effect of Group at Interval 1. This is esisdly a one-way analysis of variance with
no repeated measures, since the Group means now reépghesaverage of single—rather than

repeated—observations on subjects. Thus, subject difeseme confounded with experimental

error. In this case, the appropriate error sum of sqdar%swmcen, where, from Table 14.4,

S mer = 558 wingpap+ 55
= 334,722,034 281,199.34 = £65,921.37

Tl anin gronge

and

SS‘W."'n cell

M e =
i df.‘:‘sw.%gmp +dffx3w.ﬁngmp

_ 665,521.37
214105

= 528505



It may be easier for you to understand why we need thi@d;&é@wmen error term if you think
about what it really represents. If you were presentddamly the data for Interval 1 in

Table 14.4 and wished to test the differences among thegtoeps, you would run a standard

one-way analysis of variance, and e’z would be the average of the variances within each

of the three groups. Similarly, if you had only the dadanfinterval 2, Interval 3, and so on, you

would again average the variances within the three tegdtgroups. Thé{ e that we have
just finished calculating is in reality the average efénror terms for these six different sets

(Intervals) of data. As such, it is the average ofimgance within each of the 18 cells.

We can now proceed to form olrratios.

s _ MSpyp, 794263302
CE T S g 9285.09

po Moo 107202

MS,, ., 528509

A further difficulty arises in the evaluation Bf Sincd*LSremcen also represents the sum of two
heterogeneousources of error [as can be seen by examinatiore@&(tMS) for Ss w/in groups
andl x Ss w/in groups], ouF will not be distributed on 2 and 128 We will get ourselves out
of this difficulty in the same way we did when we fd@esimilar problem concernirign

Chapter 7. We will simply calculate the relevdhtagainst which to evaluate—more precisely,

we will calculate a statistic denoted/asnd evaluatefm againstF ss{a=1/") . In this case, the

value of /' is given by Welch (1938) and Satterthwaite (1946) as



where

L= SSS‘&:wﬁngmps
V=135

o % A groops

and®. @4 df, are the corresponding degrees of freedom. For our egampl

=384, 72205 df, =21
v=281.18234 df, =105

_ (384,722.03+ 281,195 34)’

384 72007 N 521109 34°
21 105

fr

Rounding to the nearest integer gifés: 57. Thus, ouF is distributed ond - 1, f’) = (2,

57) df under?s. For 2 and 57, F o5 = 3.16. Only the difference at Interval 1 is significay

the end of 30 minutes, the three groups were performing atadent levels. It is logical to
conclude that somewhere between the first and thie isitdrval the three groups become
nonsignificantly different, and many people test ahaaterval to find that point. However, |
strongly recommend against this practice as a generaWeldave already run a number of
significance tests, and running more of them serves onhctease the error rate. Unless there is
an important theoretical reason to determine the poivhath the group differences become
nonsignificant—and | suspect that there are very few sasbs—then there is nothing to be
gained by testing each interval. Tests should be castietb answer important questions, not to

address idle curiosity or to make the analysis look “detag

M ultiple comparisons



Several studies have investigated the robustness optatdomparison procedures for testing
differences among means on the within-subjects variakdewdll (1980) studied a simple
repeated-measures design with no between-subject cont@mteadvised adopting multiple-
comparison procedures that do not use a pooled error tegrdisdlussed such a procedure (the
Games—Howell procedure) in Chapter 12. (I did use a pooledterno in the analysis of the
migraine study, but there it was reasonable to assumedenaity of variance and | was using
all of the weeks. If | had only been running a contragblving three of the weeks, | would

seriously consider calculating an error term based anthjasdata from those weeks.)

Keselman and Keselman (1988) extended Maxwell's work to mesigving one between-
subject component and made a similar recommendatidactthey showed that when the
Groups are of different sizes and sphericity is vialafamilywise error rates can become very
badly distorted. In the simple effects procedures tleahawe just considered, | recommended
using separate error terms by running one-way repeated-neasatgses for each of the
groups. For subsequent multiple-comparison procedures explhiose simple effects,
especially with unequal sample sizes, it would probabhyibe to employ the Games—Howell
procedure using those separate covariance matrices.einvadnds, to compare Intervals 3 and 4
for the Control group, you would generate your error termgusnly the Intervals 3 and 4 data

from just the Control group.

Myers (1979) has suggested making post hoc tests on a repeatsatenusing pairgetests and
a Bonferroni correction. (This is essentially whatd fibr the migraine example, though a

Bonferroni correction was not necessary because Inigrooe contrast.) Maxwell (1980)



showed that this approach does a good job of controhiadamilywise error rate, and Baker
and Lew (1987) showed that it generally compared well ag&uisty’s test in terms of power.
Baker proposed a simple modification of the Bonferromu@hly in line with that of Holm) that

had even greater power.

14.8. TWO BETWEEN-SUBJECTSVARIABLES AND ONE WITHIN-

SUBJECTSVARIABLE

The basic theory of repeated-measures analysis ohearlaas already been described in the
discussion of the previous designs. However, experimeatenmonly plan experiments with
three or more variables, some or all of which reprexspeated measures on the same subjects.
We will briefly discuss the analysis of these desi@ie calculations are straight forward,
because the sums of squares for main effects andatiweimare obtained in the usual way and

the error terms are obtained by subtraction.

We will not consider the theory behind these desigasatength. Essentially, it amounts to the
extrapolation of what has already been said aboutmberariable case. For an excellent

discussion of the underlying statistical theory see Wih@71) or Maxwell and Delaney (2004).

| will take as an example a study by St. Lawrencest¥l, Shirley, Jefferson, Alleyne, and
O’Bannon (1995) on an intervention program to reduce thefiskV infection among African-

American adolescents. The study involved a comparisbrnaépproaches, one of which was a



standard 2-hour educational program used as a control con(t@) and the other was an 8-
week behavioral skills training program (BST). Subjectsewéale and Female adolescents, and
measures were taken at Pretest, Posttest, and 6 and tt iadiow-up (FU6 and FU12). There
were multiple dependent variables in the study, but tieetloat we will consider is log(freq + 1),
where freq is the frequency of condom-protected intercBlrshis is a 2 x 2 x 4 repeated-

measures design, with Intervention and Sex as betadgects factors and Time as the within-

subjects factor. This design may be diagrammed as fqllmhsré:"i represents theh group of

subjects.
Behavioral SkillsTraining Educational Control
Pretest Posttest FU6 FU12 Pretest Posttest FU6 FU12
M ale I:31 |Gl Igl |Gl GZ Gﬂ GZ Gﬂ
Female G %, 3 3, T, 3, 3, &,

The raw data and the necessary summary tables ¢obtzdd are presented in Table 14.7a.
(These data have been generated to closely mimic theegatded by St. Lawrence et al.,

though they had many more subjects. Decimal points heere dmitted.) In Table 14.7b are the
calculations for the main effects and interactiongelas elsewhere, the calculations are carried

out exactly as they are for any main effects andaatens.



Table 14.7 Data and analysis of study by St. Lawrence et al. (1995)

(a) Data
Male Female
Pretest Posttest FUG6 FU12 Pretest Posttest FUG6 FU12
7 22 13 14 0 6 22 26
25 10 17 24 0 16 12 15
Behavioral 50 36 49 23 0 8 0 0
Skill 16 38 34 24 15 14 22 8
Training 33 25 24 25 27 18 24 37
10 7 23 26 0 0 0 0
13 33 27 24 4 27 21 3
22 20 21 11 26 9 9 12
4 0 12 0 0 0 14 1
17 16 20 10 0 0 12 0
0 0 0 0 15 28 26 15
69 56 14 36 0 0 0 0
5 0 0 5 6 0 23 0
4 24 0 0 0 0 0 0
Educational 35 8 0 0 25 28 0 16
Control 7 0 9 37 36 22 14 48
51 53 8 26 19 22 29 2
25 0 0 15 0 0 5 14
59 45 11 16 0 0 0 0
40 2 33 16 0 0 0 0
Group x Sex x Time means
Pretest  Posttest FUG6 FU12 M ean
BST Male 19.7 20.7 24.0 18.1 20.625
BST Female 7.2 9.8 13.6 10.2 10.200
EC Male 29.5 18.8 7.5 15.1 17.725
EC Female 10.1 10.0 9.7 9.5 9.825

Mean 16.625 14.825 13.700 13.225 14.594




Group x Sex means

Male Female M ean

BST 20.625 10.200 15.412
EC 17.725  9.825 13.775
Mean 19.175 10.012 14.594

(b) Calculations

SSpm = ZX - E) = (T-14.594) +.. +(0-14.594) =35404.594
S8y =t L gy — E) = 4[(14 ~14.504Y" +_ +(0- 14_594]2] — 21490.344

R msz(fg—ff = m><4><2[(15.412—1-4.5::.:'4)2 +(13.7?5—14.594)2] =107.256

Sy = 722 X~ ) = 10x4x2[(19.175-14.504)" +(10.012-14 594)" | = 3358 056

S5ty o5 = AELLE o — E)° =10%4 [[20.625 ~14.594)" + _+(9.825- 14.594)2} = 3520.069
S8 = S50z g5 = S5 = 85, = 3529.069-107.256 - 3358 056 = 63.757
Sime = 7255 Ty — B) =10x2x2[ (16,625 14.594) +_ +(13.225-14 504)" | = 274 069

Hme

S5 v = #ST(E L pe— KT = 1r:|><2[(13.45—14.594]2 +...+(12.300—14.594ﬂ= 1759.144
S = S8z e — S8y — 555 =1759.144 - 274 069 -107.256 = 1377 819
5SS rs = PET(E gy e — X)° = mxz[{24.60—14.594f +... +(9.85—14.594}3}:4412.044
S = S5 g e — S5y — S5 = 4412.044 - 274.06% - 3358 056 = 779.919
Sy epe = AL(E g e — Z)T =10 [[19.? —14.594Y +_ +(9 50— 14 594}"] = 6437294
S e = Sz ors — 5 — 85y — 88 — S8 — 580 — S
= £437.204 - 107.256 - 274.069—3358.056 - 1377.819-63.757-779.919 = 476 419

(c) Summary Table

Source df SS MS F

Between subjects 39 21,490.344
Group (Condition) 1 107.256 107.256 0.21
Sex 1 3358.056 3358.056 6.73*
GxS 1 63.757 63.757 0.13
Ssw/in groups** 36 17,961.275 498.924

Within subjects** 120  13,914.250
Time 3 274.069 91.356 0.90
TxG 3 1377.819 459.273  4.51*
TxS 3 779.919 259.973 2.55
TxGxS 3 476.419 158.806 1.56




T x Ss w/in groups** 108 11,006.025 101.908

Total 159 35,404.594

*p < .05 ** Obtained by subtraction
The summary table for the analysis of variance is ptedan Table 14.7c. In this table, the **

indicate terms that were obtained by subtraction. Spaliyf,

SSw.ﬁnsubj = S Spm Ssbetw.emmlzgi
SSstmms = Ssbetwemmbj_ SO By Sl

s mimarps = e T SR T e T Sy T e
These last two terms are the error terms for betvgabjects and within-subjects effects,
respectively. That these error terms are appropriaigoi&n by examining the expected mean
squares presented in Table 14.8 on pag€x®or the expected mean squares of random and

mixed models, see Kirk (1968) or Winer (1971).

From the column ofF in the summary table of Table 14.7c, we see that the efi@ct of Sex is
significant, as is the Time x Group interaction. Batbhese results are meaningful. As you will
recall, the dependent variable is a measure of the freguémnise of condoms (log(freq + 1)).
Examination of the means reveals adolescent girls redowter frequency of use than
adolescent boys. That could mean either that they édowwer frequency of intercourse, or that
they use condoms a lower percentage of the time. Supptiarelata supplied by St. Lawrence
et al. show that females do report using condoms & Ipereentage of the time than males, but
not enough to account for the difference that we see A@parently what we are seeing is a

reflection of the reported frequency of intercourse.

The most important result in this summary table isTtinge x Group interaction. This is

precisely what we would be looking for. We don't reallyecabout a Group effect, because we



would like the groups to be equal at pretest, and that equalitid dilute any overall group
difference. Nor do we particularly care about a mafi@ctfof Time, because we expect the
Control group not to show appreciable change over tintetlat would dilute any Time effect.
What we really want to see is that the BST groupeiases their use over time, whereas the EC

group remains constant. That is an interaction, artdghehat we found.

Table 14.8 Expected mean squares wihB, andC fixed

Source df SS
Between subjects abn1
A a-1 le +cJ§ +?zE:-c:5':
B b-1 Of +ca‘f +mxc5§.
AB (a-1)(b1) a, +ed) +uc by
Ss w/in groups ab(n-1) @ +ea?
Within subjects abn(c-1)
C c-1 le +c:l:ir + nabﬂf
AC (@1)c1) G+ + b
BC (b-1)(c-1) o+ + nad
ABC oo
@D ODED 2 1ad,
& rx ¥

C x Ss w/in groups ab(n-1)(c-1) .
xrx

&

Total N-1




Simple effectsfor complex repeated-measur es designs

In the previous example we saw that tests on withinestbgffects were occasionally disrupted
by violations of the sphericity assumption, and we toofsste work around this problem. We

will have much the same problem with this example.

The cell means plotted in Figure 14.3 reveal the wayhichvfrequency of condom use changes
over time for the two treatment conditions and f@aes and females separately. It is clear from

this figure that the data do not tell a simple story.

At Sex of Subject = Male At Sex of Subject= Femala

Fargiral Means

Treaknenl coredl lon

Rarghal RMean
)
I
@

" - Treame itcoudton
- JE—

TRE

Thit

Figure 14.3 Frequency of condom use as a function of Sex and Gmmdit

We are again going to have to distinguish between siaffdets on between-subject factors and
simple effects on within-subject factors. We willrstaith between-subject simple effects. We
have three different between-subjects simple efféetiswe could examine—namely; the simple

main effects of Condition and Sex at each Time, baadSex x Condition simple interaction



effect at each Time. For example, we might wishhec& that the two Conditions (BST and EC)
do not differ at pretest. Again, we might also want tottest they do differ at FU6 and/or at
FU12. Here we are really dissecting the ConditionmeTinteraction effect, which we know

from Table 14.7 to be significant.

By far the easiest way to test these between-sulgéetds is to run separate two-way
(Condition x Sex) analyses at each level of theeTuariable. These four analyses will give you
all three simple effects at each Time with only migffort. You can then accept thevalues
from these analyses, as | have done here for comamier you can pool the error terms from
the four separate analyses and use that pooled errointézsting the mean square for the
relevant effect. If these terms are heterogeneouswgaold be wise not to pool them. On the
other hand, if they represent homogeneous sources afhearithey may be pooled, giving you
more degrees of freedom for error. For these effeeisdpn’t need to worry about sphericity

because each simple effect is calculated on only meédé the repeated-measures variable.

The within-subjects simple effects are handled in mhelsame way. For example, there is
some reason to look at the simple effects of Timeeéwh Condition separately to see whether
the EC condition shows changes over time in theradasef a complete intervention. Similarly,
we would like to see how the BST condition changes titk. However, we want to include
Sex as an effect in both of these analyses sotde mdlate the error term unnecessarily. We
also want to use a separate error term for each asalgther than pooling these across

Conditions.



The relevant analyses are presented in Table 14.9 fpleseffects at one level of the other

variable. Tests at the other levels would be carriednatie same way. Although this table has

more simple effects than we care about, they arepted to illustrate the way in which tests

were constructed. You would probably be foolish to consitlerf the tests that result from this

approach, because you would seriously inflate the famigyetisor rate. Decide what you want

to look at before you run the analyses, and then stittkatadecision. If you really want to look

at a large number of simple effects, consider adoptiegobthe Bonferroni approaches

discussed in Chapter 12.

Table 14.9 Analysis of simple effects

(a) Between-subjects effects (Condition, Sex, and Condition x Sex) at Pretest

Source df SS MS F
Condition 1 403.225 403.225 1.45
Sex 1 2544.025 2544.025 9.13*
Conditionx Sex 1 119.025 119.025 0.43
Error 36 10027.100 278.530
Total 39 13093.375
(b) Within-subject effects (Sex, Time, Time x Sex) at BST
Source df SS MS F
Between subjects 19  7849.13
Sex 1 2173.61 2173.61 6.89*
Error (between) 18 5675.52 315.30
Within subjects 60 3646.26
Time 3 338.94 112.98 1.88
TxS 3 54.54 18.18 0.30
Error (within) 54  3252.78 60.24
Total 79 11495.39

*p <.05



From the between-subjects analysis in Tablel4.9a we aeatthime 1 (Pretest) there was a
significant difference between males and females (fesy&how a lower frequency of use). But
there were no Condition effects nor was there a @iondk Sex interaction. Males exceed
females by just about the same amount in each Gondithe fact that there is no Condition
effect is reassuring, because it would not be comfottirilnd that our two conditions differed

before we had applied any treatment.

From the results in Table 14.9b we see that for the &Bidition there is again a significant
difference due to Sex, but there is no Time effectandime x Sex interaction. This is
discouraging: It tells us that when we average acrossh®ex is no change in frequency of
condom use as a result of our intervention. This runateo to the conclusion that we might
have drawn from the overall analysis where we saigrafisant Condition by Time interaction,
and speaks to the value of examining simple effectsfattehat an effect we seek is significant

does not necessarily mean that it is significant éndinection we desire.

14.9. TWO WITHIN-SUBJECTSVARIABLES AND ONE BETWEEN-

SUBJECTSVARIABLE

The design we just considered can be seen as a dwaigdrd extension of the case of one
between- and one within-subjects variable. All thatheeded to add to the summary table was
another main effect and the corresponding interactidasever, when we examine a design

with two within-subjects main effects, the problem bwes slightly more complicated because



of the presence of additional error terms. To use & ipeneric notation, we will label the

independent variables asB, andC.

Suppose that as a variation on the previous study we gedtio use different subjects for the
two levels of variablé (Gender), but we ran each subject under all combinatiovar@blesB

(Condition) andC (Trials). This design can be diagrammed as

4 4
I:jl CZ CE I:jl Cﬂ CE
Bl IGl IGl IGl GE GE GE
32 IGl IGl IGl GE GE GE
B, G G G & G G

Before we consider an example, we will examine the @rpemean squares for this design.
These are presented in Table 14.10 for the case of thd madeich all factors other than

subjects are fixed. (subjects are treated as a random.fdatmm the expected mean squares it is

evident that we will have four error terms for this desi§s before, thBP s win gomsis used to
test the between-subjects effect. When it comelsaavithin-subjects terms, howev& and the
interaction ofB with A are tested b x Ss within groupsC and its interaction witlA are tested
by C x Ss within groups; an@&C and its interaction witlA are tested bBC x Ss within groups.

Why this is necessary is apparent from the expected sogeanes

Table 14.10 Expected mean squares

Source df E(MS)
Between subjects an—1
A (groups) a-1 ol +heas +rbed?

Ss w/in groups a(n—-1) o+




Within subjects na(bc— 1)

B b-1 O’f +-~:J}§.‘T +Mac5§
AB @-1)b-1) a? +-~:c:l{'§.‘T +?¢¢5’iﬁ
B x Ss w/in groups ab-1)n-1) o +':C',_§‘;

c c-1 a2 +ha, + nabd?
AC @-1ec-1) P 4beh 4 b
C x Ss w/in groups a(c-1)(n-1) O.Z H:,C: N
BC (b - 1)(C - 1) c:r} + ”C',%; +?zc15;r
ABC @-1)b-1)c-1) &2 +ng, +nol,
BCx Ss w/in groups ~ aP-1)c-1)h-1) o + et

Total N-1

An analysis of data on conditioned suppr ession

Assume that a tiny “click” on your clock radio alwayigistly precedes your loud and intrusive
alarm going off. Over time that click (psychologistsukbcall it a “CS”) could come to elicit the
responses normally produced by the alarm (the “US”). blage it is possible that simply
presenting the click might lead to the suppression of gning behavior, even if that click is not
accompanied by the alarm. (If you were lying there regdiou might pause in your reading.) In
a laboratory investigation of how the click affects (segpes) ongoing behavior, Bouton and
Swartzentruber (1985) investigated the degree to which awtnieh had previously been paired
with shock, would suppress the rate of an ongoing bar-pgesssponse in rats. Suppression was
measured by taking the ratio of the number of bar preksesy a 1-minute test period following
the tone to the total number of bar presses during batselibe period and the test period. For

all groups, behavior was assessed in two Phases—a Shasek (shock accompanied the tone)



and a No-Shock phase (shock did not accompany the tqregteel over a series of four Cycles

of the experiment.

It may be easier to understand the design of the #tydu first glance at the layout of

Table 14.11. During Phase |, GroAgB was placed in BoA. After a 1-minute baseline interval,
during which the animal bar-pressed for food, a tone wasmes for 1 minute and was
followed by a mild shock. The degree of suppression ofahg@lessing response when the tone
was present (a normal fear response) was recordedniial was then placed in Bé&xfor

Phase Il of the cycle, where, after 1 minute of baedbar-pressing, only the tone stimulus was
presented. Since the tone was previously paired with siiatiquld suppress bar-pressing
behavior to some extent. Over a seried-& cycles, however, the subject should learn that
shock is never administered in Phase Il and thatBisxherefore a “safe” box. Thus, for later

cycles there should be less suppression on the no-sieisk

GroupL-A-B was treated in the same way as Grau except that these animals previously had
had experience with a situation in which a light, rathan a tone, had been paired with shock.
Because of this previous experience, the authors expectadithals to perform slightly better

(less suppression during Phase 1) than did the other gesppcially on the first cycle or two.

GroupA-A was also treated in the same way as Gapexcept that both Phases were carried
out in the same box—BoXk. Because there were no differences in the test hox@sve as cues
(i.e., animals had no way to distinguish the no-shoak fiiee shock phases), this group would

be expected to show the most suppression during the No-ghasks.



Bouton and Swartzentruber predicted that overall thenddvbe a main effect due to Phase (i.e.,
a difference between shock and no-shock Phases) neeffect due to Group#\{B andL-A-B
showing less suppression th&R), and a main effect due to Cycles (animals tested inBBox
would learn over time that it was a safe locatiomeyalso predicted that each of the
interactions would be significant. (One reason | chioagse this example, even though it is
difficult to describe concisely, is that it is onktloose rare studies in which all effects are

predicted to be significant and meaningful.)

The data and analysis of variance for this study arepted in Table 14.11. The analysis has

not been elaborated in detail because it mainly ire®teps that you already know how to do.
The results are presented graphically in Figure 14.4 for coawei and for the most part they

are clear-cut and in the predicted direction. Keep imdrtinat for these data a lower score

represents more suppression—that is, the animals are daspomore slowly.



Table 14.11 Analysis of conditioned suppression (Lower scoresesspt greater suppression.)

(ap) Data
Cycle
1 2 3 4
Phase Phase Phase Phase
Subject
Group I II I 11 I 11 I 11 Mean
A-B 1 28 22 48 22 50 14 48
29.125
21 21 16 40 15 39 11 56
27.375
15 17 13 35 22 45 1 43
23.875
30 34 55 54 37 57 57 68
49.000
11 23 12 33 10 50 8 53
25.000
16 11 18 34 11 40 5 40
21.875
7 26 29 40 25 50 14 56
30.875
0 22 23 45 18 38 15 50
26.375
Meanag 12.625 22750 23.500 41.125 20.000 46.125 15.625 51.750
29.188
A-A 1 6 16 8 9 14 11 33
12.250
37 59 28 36 34 32 26 37
36.125
18 43 38 50 39 15 29 18
31.250
1 2 9 8 6 5 5 15
6.375
44 25 28 42 47 46 33 35
37.500
15 14 22 32 16 23 32 26
22.500
0 3 7 17 6 9 10 15
8.375
26 15 31 32 28 22 16 15
23.125
Meanan 17.750 20.875 22375 28.125 23.125 20.750 20.250 24.250
22.188
1-4-B 33 43 40 52 39 52 38 48
43,125
4 35 9 42 4 46 23 51
26.750
32 39 38 47 24 44 16 40
35.000
17 34 21 41 27 50 13 40
30.375

44 52 37 48 33 53 33 43



42.875

12 16 9 39 9 59 13 45
25.250
18 42 3 62 45 49 60 57
42.000
13 29 14 44 9 50 15 48
27.750
Meanrap 21.625 36250 21.375 46.875 23.750 50.375 26.375  46.500
34.141
Total 17.333  26.625 22417 38708 22.292 39.083 20.750  40.833
28.505

*Decimal points have been omitted in the table, buuiget! in the calculations.

Rather than present literally three pages of tablesaledlations, which few people would have
the patience to work through, | have chosen to carryteuainalysis using SP¥SThe data
would be entered just as they appear in Table 14.11, withuemodbr Groups on the left. You
would select Analyze, General Linear Model, Repeated Measures from the drop-down menus and
specify that there were two repeated measures (Cydleglwevels and Phases with 2 levels).
Then click orDefine and specify the variables that are associated with @&ithe cells and the
variable(s) that define the Between-Subject Factor(sk dialogue box follows, where C1P1 —
C4P2 would be moved to the Within-Subject Variables box andigiswould be moved to the

Between-Subjects Factor(s) box.



&5 Group within-Subjects Yariables Ok
&) C1F1 [Cycle, Phasel:

& C2P1 Rowet
& C2Pe E E ZEZH 12}
&5 0P P12

I P

&3':3:'2 ? 31 Help
@5 CaP1 :é:{iz%

C4p2 _7_[41]
& T 7 (42

Ee_tl.-\leen-ﬁ ubjects Factor(z):

LCovariates:

[ Model... ] [ Contrasts... J [ Flats... ] [ Post Ho. .. J [ Save.. ] [ Optionz. .. ]

From the bottom row of that dialogue box you can speglifat plots you would like to see, what
contrasts you would like to run, and any descriptive statigoel want printed out. Then click on

OK to run the analysis.

An abbreviated summary table appears below. | have @hatteies in the table related to
Greenhouse and Geisser and related corrections to condenabléh Notice that SPSS presents
separate tables for Within-Subject factors and Betweere8ufajctors, though | would prefer to

have them combined into one table with appropriate indengat

Table 14.12 SPSS output of the analysis of conditioned suppresisitsn



Measure: MEASLIRE_1

Tests of Between-Subjects Effects

Transformed Yariahle: Average

Type Il Sum
Source of Squares df Mean Sguare F giag.
Intercepnt 156009005 1 156008.005 208.364 .0an
Group 4616.760 2 2308.380 3.083 NET
Error 16723359 21 748731
Tests of Within-Subjects Effects
Measure: MEAEUREJ
Type lll Sum
Souree of Sguares df Mean Sguare F Sig.
Cycle Sphericity Assumed 2T26.974 3 908,991 12.027 .0oo
Cyele * Graup Sphericity Assumed 1047.073 fi 174512 2.3049 044
Error{Cycle) Sphericity Assumed 4761.328 i3 Ta.a7y
Fhase Sphericity Assumed 11703.130 1 11703.130 120.855 000
Phase * Group Sphericity Assumed 4054_385 2 2027183 22.493 Ruliln
Errar{Phase) Sphericity Assumed 1892.509 1 90124
Cyele * Phase Sphericity Assumed 741816 3 247172 4.034 011
Cycle® Phase ® Group  Sphericity Assumed 1273.781 G 212297 3466 04
ErroriCycle*Phase) Sphericity Assumed 3859.0748 63 61,254

Notice that there are multiple error terms in thdéetabhe Group effect is tested by the Error

term in the Between-Subjects table. Then Cycle and Gy@up are tested by Error(Cycle),

Phase and PhageGroup are tested by Error(Phase), and Cydidase and Cyche Phasex

Group are tested by Error(CyctePhase).
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Figure 14.4 Conditioned suppression data

From the summary table in Table 14.12, it is clear thatly all the predictions were supported.
The only effect that was not significant was the nedfact of Groups, but that effect is not
crucial because it represents an average across theatwthe no-shock phases, and the
experimenters had predicted little or no group differemtéise shock phase. In this context, the

Phase x Group interaction is of more interest, argdclkearly significant.

The presence of an interpretable three-way interadfif@ns the opportunity to give another
example of the use of simple interaction effects.Wdeld have predicted that all groups would
show high levels of suppression of the shock trials b@yadles, because anticipated shock is
clearly disruptive. On no-shock trials, however, Gro&fs andL-A-B should show less
suppression (higher scores) than Gréufy, and this latter difference should increase with
Cycles. In other words, there should be a Groups x Cittlersction for the no-shock trials, but

no such interaction for the shock trials. The singéfects are shown in Table 14.13. (In these



tables Ihave left in the corrections based on GreenhBaesser, Huhyn-Feldt, and Lower-

Bound solutions to illustrate how they are presented bysSP®ether or not we choose to
implement the corrections does not affect the cormhgsiThe calculation of the appropriate

tests was carried out the same way it was earliemtnying a reduced analysis of variance using
only the Phase 1 (or Phase 2) cells. Here again wesarg separate error terms to test the Shock
and No-shock effects, thus reducing problems with the sptyesissumption. (Again, just

because the analyses also give simple effects due to GandfSycles is no reason to feel an
obligation to interpret them. If they don’t speak to issaesed by the experimental hypotheses,
they should neither be reported nor interpreted unlessajkeusteps to minimize the increase in

the experimentwise error rate.)

Table 14.13 Simple interaction effects on conditioned suppresdaia

(&) Within-subject effects (Group x Cycle at Phasel)

Tests of Between-Subjects Effects

Measure: MEASLIRE_1
Transfarmed Vatiahle: Avarage

Type ll Sum
Source of Squares df Mean Sguare F Sig.
Intercept 41126.7610 1 41126.760 T73.845 .0oo
Group 453 396 2 229193 A1 Rilat:
Error 11699594 21 86,933




Tests of Within-Subjects Effects

Measure: MEASURE_1

Type lll Sum
Source of Sguares df Mean Sguare F i,
Cyile Sphericity Assumed 403 6145 3 134538 1.740 168
Greenhouse-Geisser 403.614 2.391 168.788 1.740 J180
Huynh-F eldt 403 614 2877 135598 1.740 J168
Lowrer-bound 403 615 1.000 403615 1.740 2
Cywele ® Group  Sphericity Assumed 415 604 fi BY267 896 504
Greenhouse-Geissen 414 604 4,783 26.901 286 B8
Huynh-F eldt 415 604 5.953 B5.813 896 A03
Lowrer-bound 415 604 2.000 207.802 896 423
ErrorCycle)  Sphericity Assumed 4871.0H 63 77318
Greenhause-Geisser 4871.031 a0.216 9y.001
Huynh-F eldt 4871.031 B2.a08 Traz2y
Lovwrar-hound 4871 031 21.000 231854
(b) Within-subject effects (Group x Cycle at Phase 1)
Tests of Between-Subjects Effects
Measure: MEASLRE_1
Transformed Variahble: Average
Type Il Sum
Source of Squares df Mean Sguare F Sig.
Intercept 126585374 1 126585 375 449 008 noa
Group 8212750 2 4106.374 14 566 .oon
Error A920.374 21 281.923
Tests of Within-Sulyjects Effects
Meazure, MEASURE 1
Typee ll Sum
Source of Squares df hean Square F Sin.
Cycle Sphericity Azsumed 3064 875 3 1021 625 17166 i}
Greenhouse-Geizser 3064 575 2275 1347 224 17166 oo
Huyrih-Felct 3064 575 24809 1091 055 17166 oo
Lovver-hound SOG4 473 1.000 d0G4 G673 17166 000
Cycle * Group Sphericity Assumed 1905 250 5 T 542 5336 i}
Greenhouse-Geisser 1905.250 4550 a4 5.35336 o
Huynib-Felot 1805240 3616 339131 5336 000
Lower-bound 1805250 2.000 952 625 5.35336 013
Error(Cycle) Sphericity Aszumed 3749.375 63 289514
Greenholse-Geizser 3749375 47774 a4
Huyrih-Felct 3749375 53.989 E3.560
Lower-bound 3749375 21.000 175.542




From the simple interaction effects of Group x Cytleach level of Phase, you can see that
Bouton and Swartzentruber’s predictions were upheld. Tiser@ Cycle x Group interaction on

Shock trials, but there is a clear interaction onddoek trials.

14.10. INTRACLASS CORRELATION

One of the important issues in designing experiments ifi@ldyis the question of the reliability
of the measurements. Most of you would probably expetthbéast place to look for anything
about reliability is in a discussion of the analysivafiance, but that is exactly where you will
find it. (For additional material on the intraclassretation, go to

http://www.uvm.edu/~dhowell/StatPages/More_ Stuff/icc/itmlh

Suppose that we are interested in measuring the relabitih which judges rate the degree of
prosocial behavior in young children. We might invesggais reliability by having two or more
judges each rate a behavior sample of a number of chilassigning a number from 1 to 10 to
reflect the amount of prosocial behavior in each benaample. | will demonstrate the
procedure with some extreme data that were createdk® anpoint. Look at the data in

Table 14.18.



Table 14.18

(@ (b) (c)
Judge Judge Judge
Child I Il "l I I "l I I "
1 1 1 2 1 0 3 1 3 7
2 3 3 3 3 2 5 3 1 5
3 5 5 5 5 4 7 5 7 4
4 5 6 6 5 4 7 5 5 5
5 7 7 7 7 6 8 7 6 7

In Table 14.18a the judges are in almost perfect agreeiey.all see wide differences

between children, they all agree on which children sh@h lavels of prosocial behavior and
which show low levelsandthey are nearly in agreement on how high or low thesss are. In
this case nearly all of the variability in the data ines differences among children—there is

almost no variability among judges and almost no randoon.er

In Table 14.18b we see much the same pattern, but witfeeedce. The judges do see overall
differences among the children, and they do agree on whitdren show the highest (and
lowest) levels of the behavior. But the judges disagréerms of the amount of prosocial
behavior they see. Judge Il sees slightly less behdaoardudge | (his mean is 1 point lower),
and Judge 1l sees relatively more behavior than do tlerotn other words, while the judges
agree ororderingchildren, they disagree devel Here the data involve both variability among
children and variability among judges. However, the randoor component is still very small.
This is often the most realistic model of how people keehavior because each of us has a
different understanding of how much behavior is requireshto a rating of “7,” for example.
Our assessment of the reliability of a rating systamstmormally take variability among judges

into account.



Finally, Table 14.18c shows a pattern where not only dauttgeg disagree in level, they also

disagree in ordering children. A large percentage of thahility in these data is error variance.

So what do we do when we want to talk about reliabil@y® way to measure reliability when
judges use only a few levels or categories is to catie percentage of times that two judges
agree on their rating, but this measure is biased becabgghdevels of chance agreement
whenever one or two categories predominate. (But seedtigsdion earlier of Cohen’s kappa.)
Another common approach is to correlate the ratingwofudges, and perhaps average
pairwise correlations if you have multiple judges. But #uproach will not take differences
between judges into account. (If one judge always ratep@irgs higher than another judge the
correlation will be 1.00, but the judges are saying diffetieings about the subjects.) A third
way is to calculate what is called timraclass correlation, taking differences due to judges

into account. That is what we will do here.

You can calculate an intraclass correlation coeffitin a number of different ways, depending
on whether you treat judges as a fixed or random variablevaather judges evaluate the same
or different subjects. The classic reference for aliss correlation is Shrout and Fleiss (1979),
who discuss several alternative approaches. | am goiutigdoss only the most common
approach here, one in which we consider our judges tod®dam sample of all judges we
could have used and in which each judge rates the sanfesséjexts once. (In what follows |
am assuming that judges are rating “subjects,” but theld @murating pictures, cars, or the

livability of cities. Take the word “subject” as a genddon for whatever is being rated.)



We will start by assuming that the data in Table 14.1&eaepresented by the following

model:

Xg,. = A+ ey
In this model® stands for the effect of tlith judge,”: stands for the effect of tlith subject
(person), %% is the interaction between tfté judge and thgth subject (the degree to which the

judge changes his or her rating system when confrontedheittsubject), andi stands for the

error associated with that specific rating. Becaush gaige rates each subject only once, it is

not possible in this model to estimdt& and® separately, but it is necessary to keep them

separate in the model.

If you look back to the previous chapter you will see tHag¢nmwe calculated a magnitude-of-
effect measure (which was essentiallyrafamily measure), we took the variance estimate for
the effect in question (in this case differences ansutgects) relative to the sum of the
estimates of the several sources of variance. Shaecisely what we are going to do here. We

will let

Intraclass correlation = af/(ai + le +J§z + C,—j)

If most of the variability in the data is due to diffecea between subjects, with only a small
amount due to differences between judges, the interaatijodges and subjects, and error, then
this ratio will be close to 1.00. If judges differ from careother in how high or low they rate

people in general, or if there is a judge by subject intiera(different judges rate different



people differently), or if there is a lot of errorthme ratings, the denominator will be substantially

larger than the numerator and the ratio will be mieshk than 1.00.

To compute the intraclass correlation we are firsh@od run a Subjects x Judges analysis of
variance with Judges as a repeated measure. Becaugaedeggchates each subject only once,
there will not be an independent estimate of ernud,vae will have to use the Judge x Subject
interaction as the error term. From the summar\etdidt results, we will compute our estimate
of the intraclass correlation as

M spieas — M s

MSppae T{J —1) M5, "‘f(:MShﬁge _MSst)/-’ﬂ

Intraclass correlation =

wherej represents the number of judges amdpresents the number of subjects.

To illustrate this, | have run the analysis of variaonghe data in Table14.18b, which is the data
set where | have deliberately built in some differsndae to subjects and judges. The summary

table for this analysis follows.

Source df SS MS F
Between subjects 4 57.067 14.267
Within subjects 10 20.666 2.067
Judge 2 20.133 10.067 150.25
Judge x Subjects 8 0.533 0.067
Total 14 77.733

We can now calculate the intraclass correlation as

) 14 267 — 0067
Intraclass cotrelat on =
14267 +(3-1)0.067 +3{10.067 — 0.067) /5
14.200 14.2

0

T 142674013446 20401



Thus our measure of reliability is .70, which is probablyasgood as we would like to see it.
But we can tell from the calculation that the mdamg that contributed to low reliability was not
error, but differences among judges. This would suggestvihaeed to have our judges work

together to decide on a consistent scale where a €&hsithe same thing to each judge.

14.11. OTHER CONSIDERATIONS

Sequence effects

Repeated-measures designs are notoriously susceptsefputmce effects andcarryover
(practice)effects. Whenever the possibility exists that exposure to mearment will influence
the effect of another treatment, the experimenteulshconsider very seriously before deciding
to use a repeated-measures design. In certain studig@veareffects are desirable. In learning
studies, for example, the basic data represent whatriged over from one trial to another. In
most situations, however, carryover effects (and aslbpedifferential carryover effects) are

considered a nuisance—something to be avoided.

The statistical theory of repeated-measures designmasghat the order of administration is
randomized separately for each subject, unless, of cabhesegpeated measure is something like
trials, where it is impossible to have trial 2 beforal tL. In some situations, however, it makes
more sense to assign testing sequences by meahsatihasguare or some other device.
Although this violates the assumption of randomizatinrgoime situations the gains outweigh

the losses. What is important, however, is that randssignment, Latin squares, and so on do



not in themselves eliminate sequence effects. Ignorinigsasin which the data asmalyzed

by means of a Latin square or a related statisticalgoiare, any system of assignment simply
distributes sequence and carryover effects acroselseot the design, with luck lumping them
into the error term(s). The phrase “with luck” imglighat if this does not happen, the carryover
effects will be confounded with treatment effects drresults will be very difficult, if not
impossible, to interpret. For those students particuiargrested in examining sequence effects,
Winer (1971), Kirk (1968), and Cochran and Cox (1957) present erteéliscussions of Latin

square and related designs.

Unegual group sizes

One of the pleasant features of repeated-measures slesthat when a subject fails to arrive
for an experiment, it often means that that subjectissing from every cell in which he was to
serve. This has the effect of keeping the cell sizepagstional, even if unequal. If you are so
unlucky as to have a subject for whom you have partial tedacommon procedure is to
eliminate that subject from the analysis. If, howewaty one or two scores are missing, it is
possible to replace them with estimates, and in margsdass is a satisfactory approach. For a
discussion of this topic, see Federer (1955, pp. 125-126, 133f@spadially Little and Rubin

(1987), and Howell (2008) and the discussion in Section 14.12.



M atched samples and related problems

In discussing repeated-measures designs, we have spokemsnaf repeated measurements on
the same subject. Although this represents the most oarmmatance of the use of these designs,
it is not the only one. The specific fact that a subgttsted several times really has nothing to
do with the matter. Technically, what distinguishes atp@measures designs (or, more
generally,randomized blocks designs, of which repeated-measures designs are a special case)
from the common factorial designs with egoslis the fact that for repeated-measures designs,
the off-diagonal elements df do not have an expectation of zero—that is, the tesaisrare
correlated. Repeated use of the same subject leads tomuelations, but so does use of
matched samples of subjects. Thus, for example, if we formed 10 setbrefe subjects each,

with the subjects matched on driving experience, and thermpsan experiment in which the first
subject under each treatment came from the same mat@dve would have correlations
among treatments and would thus have a repeated-measuges Aayg other data-collection
procedure leading to nonzero correlations (or covariarmmesd also be treated as a repeated-

measures design.

14.12. MIXED MODELSFOR REPEATED-MEASURES DESIGNS

Earlier in the chapter | said that the standard repeatasures analysis of variance requires an

assumption about the variance—covariance matrix knewspleericity a specific form of which

is known asompound symmetryWhen we discussetiand#, we were concerned with



correction factors that we could apply to the degredésefiom to circumvent some of the

problems associated with a failure of the sphericisyagtion.

There is a considerable literature on repeated-measwabses and their robustness in the face
of violations of the underlying assumptions. Although themot universal agreement that the
adjustments proposed by Greenhouse and Geisser and by HhayRbldt are successful, the
adjustments work reasonably well as long as we focusserall main or interaction effects, or
as long as we use only data that relate to specific sieffécts (rather than using overall error
terms). Where we encounter serious trouble is whenyae tun individual contrasts or simple
effects analyses using pooled error terms. Boik (1981) haesiat in these cases the
repeated-measures analysis is remarkably sensitive adiomd of the sphericity assumption
unless we adopt separate error terms for each coratsdstlid for the simple effects tests in
Table 14.13. However there is another way of dealing vgshimptions about the covariance
matrix, and that is to not make such assumptions. Bdi that we need to take a different

approach to the analysis itself.

Standard repeated measures analysis of variance hasatwenps that we have lived with for
many years and will probably continue to live with. Itutases both compound symmetry (or
sphericity) and complete data. If a participant does notaagpea follow-up session, even if he
appears for all of the others, he must be eliminated thenanalysis. There is an alternative
approach to the analysis of repeated measures desigasdéisatot hinge on either sphericity
assumptions or complete data. This analysis is offerree to asnixed models, multilevel

modeling, or hierarchical modeling. There is a bit of confusion here because we hagadjr



used the phrase “mixed models” to refer to any experimerggrdéhat involves both fixed and
random factors. That is a perfectly legitimate usage vien we are speaking of a method of
analysis, such as we are here, the phrase “mixed madé&ss more to a particular type of
solution, involving both fixed and random factors, using aedsifit approach to the arithmetic.
More specifically, when someone claims to have doeg #malysis using mixed models, they
are referring to a solution that emplaysximum likelihood or, more likely,restricted
maximum likelihood (REML) in place of the least squares approaches that wefdayvsed on

up to now and will focus on again in the next two chapters

This section covers a small part of the broader topigesarchical or multilevel models. For
these models the repeated measure (e.g. Time or Tisi@d$xed factor while Subjects is a
random factor. The between-subjects factor is also lysudiked factor. By approaching the
problem using restricted maximum likelihood (REML) asttiethod of parameter estimation,
the solution can take cognizance from the very beginnirigeofnalysis that one or more factors
are fixed and one or more factors are random. Leastes)salutions of standard analysis of

variance treats all factors as fixed until it corteedetermining error terms fér statistics.

No one would seriously attempt to do employ a mixed madalysis by hand. You must use
computer software to perform the analysis. However therenany software programs
available, some of them even free. The ones thatwlbhave most access to are probaBBSS
Mixed andSAS Proc Mixed. | will use SPSS for our example, thoughS proc mixed is
probably more flexible. A more complete discussiothefanalysis of alternative designs can be

found athttp://www.uvm.edu/~dhowell/StatPages/More Stuff/Missing DaieglModels for




Repeated Measures.ptor an example | have chosen a design with onedeet\subject

variable and one within subject variable. The exampdentiasing data because that will

illustrate an analysis that you can not do with stechdaalysis of variance.

The Data

| created data to have a number of characteristicseTdre two groups — a Control

group and a Treatment group, measured at 4 times. Thessedna labeled as O (pretest),

1 (one month posttest), 3 (three months follow-up), a(gix@nonths follow-up). | had a study
of treatment of depression in mind, so | created tlartrent group to show a sharp drop in
depression at post-test and then sustain that dropgligtit regression) at 3 and 6 months. The
Control group declines slowly over the 4 intervals bugsdoot reach the low level of the

Treatment group.

The data are shown in Table 14.19. A period is used to tedw@sing values.

Table 14.19 Data for mixed model analysis.

Group Subj TimeO Timel Time3 Time6

1 1 296 175 187 242
1 2 376 329 236 126
1 3 309 238 150 173
1 4 222 60 82 135
1 5 150 . 250 266
1 6 316 291 238 194
1 7 321 364 270 358
1 8 447 402 . 266
1 9 220 70 95 137
1 10 375 335 334 129
1 11 310 300 253 .

1 12 310 245 200 170




Group Subj TimeO Timel Time3 Time6

2 13 282 186 225 134
2 14 317 31 85 120
2 15 362 104 . .

2 16 338 132 91 77
2 17 263 94 141 142
2 18 138 38 16 95
2 19 329 . . 6
2 20 292 139 104 .

2 21 275 94 135 137
2 22 150 48 20 85
2 23 319 68 67 .

2 24 300 138 114 174

One difference between data files for mixed models &nekr® is that we use what is often called
a “long form.” Instead of putting each subject’s data omlore, we have a separate line for
every value of the dependent variance. Thus our dataifilee structured like the one in Table

14.20

Table 14.20 Data restructured into a long form.

Subj Time Group dv

1 0 1 296
1 1 1 175
1 3 1 187
1 6 1 242
24 3 2 114
24 6 2 174

Instead of showing you how to use the graphical interfa&®BS, which would take quite a bit
of space, | am simply giving you the syntax for the cemd€l. After you have entered your
data, open a new Syntax window, paste in the followimgnaands, and select Run from the
toolbar. | have left out a number of commands tlafirte tuning, but what | have will run your
analysis nicely.

MIXED



dv BY Group Time

[FIXED = Group Time Group*Time | SSTYPE(3)
/METHOD = REML

/PRINT = DESCRIPTIVES SOLUTION

/REPEATED = Time | SUBJECT(Subj) COVTYPE(CS)
/EMMEANS = TABLES(Group)

/EMMEANS = TABLES(Time)

/EMMEANS = TABLES(Group*Time) .

| am only presenting the most important parts of thequin but you can see the rest by running

the analysis yourself. (The data are available omhdld’s website as WickMiss.dat.)

Information Criteri

Uialinood 0| o0s 308
e ey | 00308
il nag : & | ooosss
(Bgilt[iztigan's Criterion 916,196
oo iy | stae

The information criteria are
displayed in smalleris-better farms.

a. Dependent Yariable: dv.

Fixed Effects
Type Il Tests of Fixed Effects

Denarninatar
Source Mumeratar df df F =iy
Intercept 1 22327 268632 0oa
Sroup 1 223 16.524 001
Time 3 =il Y. 1 32453 000
Group ™ Time d a0 646 B.055 001

a. Dependent Yariable: dv.

Covariance Parameters




Estimates of Covariance Parameters=

Farameter Estimate Std. Errar
Repeated Measures  C5 diagonal offset 20454 544 51,1034
5 covariance ZRR2 656 | 1026551

2. Depandent Variahle: dy.

| will not discuss the section labeled “Informatiortena” here, but will come back to it when
we compare the fit of different models. The fixed elquart of the table looks just like one that
you would see in most analyses of variance except tdaeg not include sums of squares and
mean squares. That is because of the way that maxiikeliood solutions go about solving
the problem. In some software it is possible to fohesrt into the printout. Notice the test on the
Intercept. That is simply a test that the grand me@nasd is of no interest to us. The other
three effects are all significant. We don't reallyecgery much about the two main effects. The
groups started off equal on pre-test, and those nulrdifées would influence any overall main
effect of groups. Similarly, we don’t care a great @dmdut the Time effect because we expect
different behavior from the two groups. What we do @dreut, however, is the interaction. This
tells us that the two groups perform differently over &imvhich is what we hoped to see. You

can see this effect in Figure 14.5.



Figure 14.5 Means across trials for the two conditions.

There are two additional results in the printout tlesgtchto be considered. The section headed
“Covariance Parameters” is the random part of the mddhel term labeled “CS diagonal
offset” represents the residual variance and, withngald designs, would be the error term for
the within-subject tests. The term labeled “CS covasgars the variance of the intercepts,
meaning that if you plot the dependent variable againstfameach subject, the differences in
intercepts of those lines would represent differencesalaebjects (some lines are higher than
others) and it is this variance that we have herentast of us that variance is not particularly

important, but there are studies in which it is.

As | said earlier, mixed model analyses do not requirgsanmption of compound symmetry. In
fact, that assumption is often incorrect. In Table 14d1i can see the pattern of correlations
among trials. These are averaged over the separate gbatigs/e you a clear picture that the

structure is not one of compound symmetry.



Table 14.21 Correlations among trials

Estimated R Correlation Matrix for Subject 1

Row Colf Col2 Col3 Col4
1 1.0000 0.5121 0.4163 -0.08840
2 0.5121 1.0000 0.8510 0.3628
3 0.4163 0.8510 1.0000 0.3827
4 -0.08840 0.3628 0.3827 1.0000

There are a number of things that we could do to dleentodel that we just ran, which
requested a solution based on compound symmetry. We coudP@8 to solve the problem
without assuming anything about the correlations or cavee® (That is essentially what the
MANOVA approach to repeated measures does.) The problnivis approach is that the
solution has to derive estimates of those correlaamasthat will take away degrees of freedom,
perhaps needlessly. There is no point in declaringythatre totally ignorant when you are
really only partially ignorant. Another approach woulddassume a specific (but different)
form of the covariance matrix. For example, we couklwhat is called an autoregressive
solution. Such a solution assumes that correlationgeaet observations decrease as the times
move further apart in time. It further assume thaheacrelation depends only on the preceding
correlation plus some (perhaps much) error. If theetation between adjacent trials is, for
example 0.5121 (as it is in the study we are discussimg),times that are two steps apart are
assumed to correlate .5%24nd times three steps apart are assumed to cor&I2E. This

leads to a matrix of correlations that decrease aefyuthe more removed the observations are
from each other. That sounds like a logical expectdtiowhat we would find when we
measure depression over time. For now we are goingnisider the autoregressive covariance

structure.



Having decided on a correlational (or covariance) strustersimply need to tell SPSS to use
that structure and solve the problem as before. Theabialgge we will make is to thiepeated

command, where we will replace covtype(cs) with cpg{AR1).

MIXED
dv BY Group Time
/FIXED = Group Time Group*Time | SSTYPE(3)
/METHOD = REML
/PRINT = DESCRIPTIVES SOLUTION
/REPEATED = Time | SUBJECT(Subj) COVTYPE(ARL1)
/EMMEANS = TABLES(Group)
/EMMEANS = TABLES(Time)
/EMMEANS = TABLES(Group*Time) .

Information Criteri

Ckeinond - | 095088
i " | o
EE tr;l ;:igna Eﬁliil [-:FES:?I & g00 224
Eg;lgganlg Criterion 905 805
EEP::E z (SB?S)B’ES'E'” 903.805

The infarmation criteria are
displayed in smaller-is-better forms.

8. Dependent Variable: dv.

Fixed Effects
Type Il Tests of Fixed Effects

Denominatar
Source Mumerator df df F =i,
Intercept 1 26452 270516 0ao
(Sraup 1 2B 4R2 17,324 000
Time d &7 .453 30,5821 000
Group ™ Time ] 57,499 7721 a0

a. Dependent Yariahle: dv.



Covariance Parameters

Estimates of Covariance Parameters®

FParameter Estimate Std. Errar
Repeated Measures ART diagonal | 5349876 | 10600345
AR rho B18198 J84130

2. Dependent Variable: dw,

Here we see that all effects are still significavitich is encouraging. But which of these two
models (one assuming a compound symmetry structure tovaeance matrix and the other
assuming a first order autoregressive structure) isdttertchoice. We are going to come to the
same conclusion with either model in this case, lattighoften not true, and we still want to
know which model is better. One way of doing that isdmpare the sections labeled

“Information Criteria” for each analysis. These egproduced below for the two models.

Compound Symmetry Autoregressive (1)

Information Criterid Information Criteri3
ATV AR =k = [ RestEled Log | ggg pgg
Cretion E,r;flnr:r;n o | ong.308 prake s Eﬂ%{” atien | g99 nge
R e e | s
(Bg;ltggan's Critenon 91,135 (BCDAEEQEHIS Criteron 905,805
rtoron I?E:?@)yegian 914.135 oo I(SB?SJYE Sian | an3 805
Thie infarmation criteria are The information criteria are
displayed in smaller-is-better forms. displayed in smaller-is-better forms.

a. Dependent “ariahle: dv. a. Dependent “ariable: dv.




A good way to compare models is to compare either thé&@lka nformation Criterion (AIC) or
the Bayesian Information Criterion (BIC). In genaaahodel with a smaller value is better. For
our examples the two AIC criteria are 909.398 and 899.066. lovapdear that the
Autoregressive (1) model is to be preferred, which i@ ith what our eyes told us about the
covariance structures. (If we had rerun the analysrgyusn unstructured covariance matrix
(COVTYPE(UN)), AIC would be 903.691 and BIC would be 927.385, so wednsiill choose

the autoregressive model.)

Mixed models have a great deal to offer in terms ofifitdata to models and allow us to
compare underlying models to best interpret our data. dlseycan be very valuable in the
absence of missing data. However they are more diffiowork with and the software, while
certainly improving, is far from intuitive in some casewever | think that this is the direction
that more and more analyses will take over the nexdd#eand it is important to understand

them.

Papers by Overall, Tonidandel, and others that illustrg@toblems with mixed models. The
major problem is the fact that it is very difficudt know how to correctly specify your model,
and different specifications can lead to different lkssand sometimes rather low power. An
excellent paper in this regard is by Overall and Shivakir®#97) and another by Overall and
Tonidandel (2007). | recommend that you look at those payera considering the use of
mixed models, although those authors used BASS Mixed for their analyses and it is not

entirely clear how those models relate to models youladvhave using SPSS. What seems to be



critically important is the case where missing data de:jpenthe participant’s initial response at

baseline and attempts to use this measure as a covariate..
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EXERCISES

14.1) Itis at least part of the folklore that repeated elgmee with any standardized test

leads to better scores, even without any intervenindystVe obtain eight subjects and give

them a standardized admissions exam every Saturdaynmgdoni3 weeks. The data follow:

S Firs¢  Second

550
440
610
650
400
700
490
580

O~NO O WN -

570
440
630
670
460
680
510
550

Third
580
470
610
670
450
710
510
590

a) Write the statistical model for these data.

b) Run the analysis of variance.

c) What, if anything, would you conclude about practice effestde GRE?

14.2) Using the data from Exercise 14.1,

a) delete the data for the third session and run a (matamgie)t test between

Sessions 1 and 2.

b) Now run a repeated-measures analysis of variance dwoheolumns you used in

part (a) and compare thiswith the preceding



14.3) To demonstrate the practical uses of basic learningiplasg a psychologist with an
interest in behavior modification collected data atualy designed to teach self-care skills to
severely developmentally handicapped children. An expatahgroup received reinforcement
for activities related to self-care. A second group k&mkan equivalent amount of attention, but
no reinforcement. The children were scored (blind) byter @ a 10-point scale of self-

sufficiency. The ratings were done in a baseline gassid at the end of training. The data

follow:

Reinforcement No Reinfor cement
Basdline Training Baseline Training
8 9 3 5
5 7 5 5
3 2 8 10
5 7 2 5
2 9 5 3
6 7 6 10
5 8 6 9
6 5 4 5
4 7 3 7
4 9 5 5

Run the appropriate analysis and state your conclusions.
14.4) An experimenter with only a modicum of statisticalning took the data in
Exercise 14.3 and ran an independent-gréotgst instead, using the difference scores (training
minus baseline) as the raw data.
a) Run that analysis.

b) Square the value ofand compare it to theés you obtained in Exercise 14.3.

c¢) Explain why#'is not equal td= for Groups.
14.5) To understand just what happened in the experiment involwengraining of
severely developmentally handicapped children (Exercis®),1aur original experimenter

evaluated a third group at the same times as he did$héno groups, but otherwise provided



no special treatment. In other words, these children dideceive reinforcement, or even the

extra attention that the control group did. Their datiav:

3 4

Basline 3 5 8 5 5 6 6 6
7 3 2 2

Traningg 4 5 6 6 4 7
a) Add these data to those in Exercise 14.3 and rerun thesanaly
b) Plot the results.
c) What can you conclude from the results you obtained is gay and (b)?
d) Within the context of this three group experiment, runcibvatrast of the two
conditions that you have imported from Exercise 14.3.
e) Compute the effect size for the contrast in part d)

14.6) For 2 years | carried on a running argument with my daugbtaserning hand
calculators. She wanted one. | maintained that chiltfenuse calculators never learn to do
arithmetic correctly, whereas she maintained that dleeyi o settle the argument, we selected
five of her classmates who had calculators and five wthaa@k, and made a totally unwarranted
assumption that the presence or absence of calclats all that distinguished these children.
We then gave each child three 10-point tests (addition;asiibh, and multiplication), which
they were required to do in a very short time in themds. The scores are as follows:

Addition Subtraction Multiplication

Calculator owners 8 5 3
7 5 2
9 7 3
6 3 1
8 5 1
Non-calculator owners 10 7 6
7 6 5
6 5 5
9 7 8
9 6 9

a) Run the analysis of variance.



b) Do the data suggest that | should have given in and bougtaughter a calculator?
(I did anyway. She is now in her late 30s and is a fudhyitted actuary—so what do | know?)
14.7) For the data in Exercise 14.6,

a) calculate the variance—covariance matrices.

b) calculateusing your answers to part (a).

14.8) From the results in Exercise 14.7, do we appear to rieason to believe that we
have met the assumptions required for the analysepefated measures?

14.9) For the data in Exercise 14.6,

a) calculate all possible simple effects after firgitphg the results.
b) test the simple effects, calculating test terms aljaséed degrees of freedom where
necessary.

14.10) In a study of the way children and adults summarize stonie selected 10 fifth
graders and 10 adults. These were further subdivided intd grgugs of good and poor readers
(on the hypothesis that good and poor readers may stoggieve story information
differently). All subjects read 10 short stories andenssked to summarize the story in their
own words immediately after reading it. All summame=ze content analyzed, and the numbers
of statements related to Settings, Goals, and inf@rgabsitions were recorded. The data are

collapsed across the 10 stories:

Age Adults Children
Items Setting Goal Disp. Setting Goal
Good readers

8

Poor readers
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Run the appropriate analysis.

14.11) Refer to Exercise 14.10.

a) Calculate the simple effect of reading ability for dhain.
b) Calculate the simple effect of items for adult gocatiess.

14.12) Calculate the within-groups covariance matrices foidtta in Exercise 14.10.

14.13) Suppose we had instructed our subjects to limit their surstr 10 words. What
effect might that have on the data in Exercise 14.107?

14.14) In an investigation of cigarette smoking, an experimedécided to compare three
different procedures for quitting smoking (tapering offimediate stopping, and aversion
therapy). She took five subjects in each group and askedttheate (on a 10-point scale) their
desire to smoke “right now” in two different environmertisre versus work) both before and
after quitting. Thus, we have one between-subjectshtar{@reatment group) and two within-

subjects variables (Environment and Pre/Post).

Pre Post
Home Work Home Work
Taper 7 6 6 4
5 4 5 2
8 7 7 4
8 8 6 5
6 5 5 3
Immediate 8 7 7 6
5 5 5 4
7 6 6 5
8 7 6 5
7 6 5 4
Aversion 9 8 5 4
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a) Run the appropriate analysis of variance.
b) Interpret the results.
14.15) Plot the results you obtained in Exercise 14.14.
14.16) Run simple effects on the data in Exercise 14.14 to gl results.
14.17) The abbreviated printout in Exhibit 14.3 represents the sisady the data in
Exercise 14.5.
a) Compare this printout with the results you obtainedxerEise 14.5.

b) What does a significark for “MEAN” tell us?

C) Relate! Smimcer to the table of cell standard deviations.
Exhibit 14.3

BMDP2V - ANALYSIS OF VARIANCE AND COVARIANCES

WITH REPEATED MEASURES.

PROGRAM CONTROL INFORMATION
/PROBLEM TITLE IS 'BMDP2V ANALYSIS OF EXERGE 14.5'".
/[INPUT VARIABLES ARE 3.
FORMAT IS '(3F2.0)".
CASES ARE 30.
/VARIABLE NAMES ARE GROUP, PRE, POST.

/DESIGN DEPENDENT ARE 2, 3.
LEVELS ARE 2.
NAME IS TIME.
GROUP = 1.

/END

CELL MEANS FOR 1-ST DEPENDENTARIABLE
MARGINAL
GROUP = *1.0000 *2.0000 *3.0000

TIME
PRE 1 4.80000 4.70000 5.10000 4.86667



POST 2 7.00000 6.40000 4.60000
MARGINAL 5.90000 SCRE 4.85000
COUNT 10 10 10

STANDARD DEVIATIONS FOR 1-ST DERDENT VARIABLE

GROUP = *1.0000 *2.000 *3.0000
TIME
PRE 1 1.68655 1.76698 3B32
POST 2 2.16025 2.45855 1.89737
SUM OF EBGREES OF MEAN
SOURCE SQUARES FREEDOM  SQUARE F
MEAN 1771.26667 1 1771.26667 322.48
GROUP 11.43333 2 5.71667
1 ERROR 148.30000 27 5.49259
TIME 19.26667 1 19.26667
TG 20.63333 2 10.31667 5.06
2 ERROR 55.10000 27 2.04074

6.00000

5.43333

TAIL
PROBABILITY
0.0000
1.04 0.3669

9.44 0.0048
0.0137

14.18) The SPSS printout in Exhibit 14.4 was obtained by treahiegiita in Exercise 14.10

as though all variables were between-subjects variéidesas though the data represented a

standard three-way factorial). Show that the ernongefor the correct analysis represent a

partition of the error term for the factorial anasysi

Exhibit 14.4



Dependent Yariable: OV

Tests of Between-Subjects Effects

Type

Surm of Mean
Source Sguares df Square F Sig.
Corrected Model 1¥0.8002 11 16527 9.001 .0an
Intercept 1058.400 1 1058.400 A13.8965 .0oo
AGE GR.26T 1 GR.26T 39ATH a0
READTYFE 28.400 1 28400 17.043 .0an
PART G0.400 2 30.200 17.807 Rujuli]
AGE* READTYFE 3267 1 3.2687 1.894 ATa
AGE™ PART 433 2 ART 271 B4
READTYFPE * PART oan 2 Rujuli] Rujuli] 1.000
AGE* READTYFE * PART 8533 2 4267 2473 0945
Error 22.800 44 1.725
Total 1312000 &0
Coarrected Total 253,600 a9

. B Sguared = 674 (Adjusted R Squared = .599)

14.19) Outline the summary table for &nx B x C x D design with repeated measuresfon
andB and independent measures@andD.

14.20) Foa, Rothbaum, Riggs, and Murdock (1991) ran a study compafiegedt
treatments for posttraumatic stress disorder (PTSRBy used three groups (plus a waiting list
control) One group received Stress Inoculation Therafy),(&nother received a Prolonged
Exposure (PE) treatment, and a third received standard SwepBdunseling (SC). All clients
were measured at Pretreatment, Posttreatment, andvetb Follow-up. The data below

closely approximate the data that they collected, andependent variable is a measure of

PTSD.
SIT PE SC
Pre Post Followup| Pre ‘ Post ‘Followup Pre ‘ Post ‘Followup
19 6 1 20 5 0 12 14 18
28 14 16 21 18 21 27 18 9
18 6 8 36 26 17 24 19 13




23 6 11 25 11 9 32 21 11
21 6 13 26 2 7 26 20 18
24 10 8 30 31 10 18 20 26
26 10 7 19 6 11 38 35 34
15 6 13 19 7 5 26 22 22
18 8 6 22 4 4 23 10 8
34 13 8 22 17 20 22 19 19
20 10 16 24 19 1 34 27 23
34 10 1 28 22 16 22 15 12
29 16 23 29 23 20 27 18 13
33 19 39 27 15 20 23 21 19
22 7 16 27 7 3 26 18 13

a) Run arepeated measures analysis of variartbessdata.
b) Draw the appropriate conclusions.

14.21) Using the data from Exercise 14.20 use SPSS to run a mixedsnaoddysis of
variance, specifying an appropriate form for the covariamaix, and compare the results with
those you obtained in Exercise 14.20.

14.22) The following data come from Exercise 14.20 with solnservations deleted. (An

entry of “999” represents a missing observation.

SIT PE SC
Pre Post Followup| Pre ‘ Post ‘ Followup | Pre ‘ Post ‘ Followup
19 6 1 20 5 0 12 14 18
28 14 16 999 999 21 27 18 9
18 6 8 36 26 17 24 999 13
999 6 11 25 11 9 32 21 11
21 6 13 26 999 7 26 20 18
24 10 8 30 31 10 18 20 26
26 10 999 19 6 11 38 35 34
15 6 13 19 7 999 26 22 999
18 8 6 22 4 999 23 10 8
34 13 8 22 17 20 22 19 19
20 999 999 24 19 1 34 999 999
34 10 1 28 22 16 22 15 12
29 16 23 29 23 20 27 18 13
33 19 39 27 15 20 23 21 19
22 7 16 27 7 3 26 18 13




a) Analyze these data using a standard repeei@sures analysis of variance.

b) How do your results differ from theuks you found in Exercise 14.20?
14.23) Now analyze the data in Exercise 14.22 asmixed models approach, an
appropriate form for the covariance matrix. How dcstheesults differ from the results you

found in Exercise 14.227?

14.24) In the data file Stress.dat, available on the Web aitedata on the stress level
reported by cancer patients and their spouses at two differess—shortly after the diagnosis
and 3 months later. The data are also distinguished lpetider of the respondent. As usual, a
“.” indicates each missing data point. See descriptidkppendix: Computer Data Sets, p.
XXX.

a) Use any statistical package to run a repeated-measurgsiadivariance with
Gender and Role (patient versus spouse) as between-stdyjaties and Time as the repeated
measure.

b) Have the program print out cell means, and plot thesgsas an aid in
interpretation.

c) There is a significant three-way interaction in @ilysis. Interpret it along with the
main effects.

14.25) Everitt reported data on a study of three treatrientinorexia in young girls. One
treatment was cognitive behavior therapy, a second wasteol condition with no therapy, and

a third was a family therapy condition. The data follo






Group| Pretes] PostteptGain
1 80.5 82.2 1.7
1 84.9 85.6 N

1 81.5 81.4 -1

1 82.6 81.9 -7
1 79.9 76.4 -3.5
1 88.7 103.6 14.9
1 94.9 98.4 3.5
1 76.3 93.4 17.1
1 81.0 73.4 -7.6
1 80.5 82.1 1.6
1 85.0 96.7 11.7
1 89.2 95.3 6.1
1 81.3 82.4 1.1
1 76.5 72.5 -4.0
1 70.0 90.9 20.9
1 80.4 71.3 -9.1
1 83.3 85.4 2.1
1 83.0 81.6 -1.4
1 87.7 89.1 1.4
1 84.2 83.9 -.3
1 86.4 82.7 -3.7
1 76.5 75.7 -.8
1 80.2 82.6 2.4
1 87.8 100.4 12.6
1 83.3 85.2 1.9
1 79.7 83.6 3.9
1 84.5 84.6 1

1 80.8 96.2 15.4
1 87.4 86.7 -7
2 80.7 80.2 -5
2 89.4 80.1 -9.3
2 91.8 86.4 -5.4
2 74.0 86.3 12.3
2 78.1 76.1 -2.0
2 88.3 78.1 -10.2
2 87.3 75.1 -12.2
Group| Pretes; Posttegt Gajn
2 75.1 86.7 11.6
2 80.6 73.5 -7.1
2 78.4 84.6 6.2
2 77.6 77.4 -0.2
2 88.7 79.5 -9.2
2 81.3 89.6 8.3
2 78.1 81.4 3.3
2 70.5 81.8 11.3
2 77.3 77.3 0.0
2 85.2 84.2 -1.0
2 86.0 75.4 -10.6
2 84.1 79.5 -4.6




79.7 73.0 -6.7

85.5 88.3 2.8

84.4 84.7 0.3

79.6 81.4 1.8

77.5 81.2 3.7

72.3 88.2 15.9

89.0 78.8 -10.2

83.8 95.2 11.4

83.3 94.3 11.0

86.0 91.5 5.5

82.5 91.9 9.4

86.7 100.3 13.6

79.6 76.7 -2.9

76.9 76.8 -0.1

94.2 101.6 7.4

73.4 94.9 21.5

80.5 75.2 -5.3

81.6 77.8 -3.8

82.1 95.5 13.4

77.6 90.7 13.1

83.5 92.5 9.0

89.9 93.8 3.9

86.0 91.7 5.7

WW W WW|WWWWW[W|WWIWIW|WIWINININININININ

87.3 98.0 10.7

a) Run an analysis of variance on group differences im Geores.

b) Repeat the analysis, but this time use a repeated meassign where the repeated
measures are Pretest and Posttest.

c) How does the answer to part (b) relate to the answearto(a)?

d) Plot scatterplots of the relationship between PretedtPosttest separately for each
group. What do these plots show?

e) Run a test on the null hypothesis that the GainferGontrol is 0.00. What does this
analysis tell you? Are you surprised?

f)  Why would significant gains in the two experimental grouptsiye interpretable

without the control group?



Discussion Questions

14.26) In Exercise 14.24 we ignored the fact that we have p&sabjects from the same

family.

a) What is wrong with doing this?

b) Under what conditions would it be acceptable to ignoepghoblem?
c) What alternative analyses would you suggest?

14.27) In Exercise 14.24 you probably noticed that many observatiofisne 2 are
missing. (This is partly because for many patients itiwd/et been 3 months since
the diagnosis.)

a) Compare the means at Time 1 for those subjects wharti who did not, have data
at Time 2.

b) If there are differences in (a), what would this ssggeyou about the data?

Not Numbered In a study of behavior problems in children Wweda3 “judges” to rate each
of 20 children on the level of aggressive behavior. These sugdgee the child’s Parent, the

child’s Teacher, and the child him/herself (Self). Theadallow.

Child 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19
I2381r ent 10 12 14 8 16 21 10 15 18 B 24 19 22 11 14 18 25 22
'7I'eacher 8§ 13 17 10 18 24 9 16 18 8 2@ 15 20 10 18 19 30 20
églf 12 17 16 15 24 24 13 17 21 13 29 16 20 15 17 21 25 25
14

These data are somewhat different from the data wers&ection 14.10 because in
that case the same people judged each child, whereahadtarent and Self

obviously change from child to child. We will ignore that the moment and simply



act as if we could somehow have the same parent argathe “self” do all the

ratings.
14.28 What is the reliability of this data set in teahthe intraclass correlation coefficient?
14.29 What do your calculations tell you about the sowrfceariability in this data set?
14.30 Suppose that you had no concern about the factrthaource systematically rates
children higher or lower than another source. How myglt evaluate reliability differently?
14.31 Under what conditions might you not be interestelifierences among judges?
14.32 What do you think is the importance of the facttti@tparent” who supplies the
parent rating changes from child to child?
14.33 Strayer, Drews, & Crouch (2006) (which we saw as adesihsubjects design in
Exercise 11.32) examined the effects of cell phone uskivng ability. They had 40
drivers drive while speaking on a cell phone, drive whilthe legal limit for alcohol
(0.08%), and drive under normal conditions. (The conditiware counterbalanced across
drivers.) The data for this study are found at

www.uvm.edu/~dhowell/methods/DataFiles/Ex14-Bheir hypothesis, based on the

research of others, was that driving while speaking @l @lsone would have as much of an
effect as driving while intoxicated. The dependent variabtaisvexample is “braking

reaction time.” The data have exactly the same maashstandard deviations as they found.

a) Run the analysis of variance for a repeatesunes design.
b) Use the appropriate contrasts to compare the torsghtions. Did the results support the

experimenters’ predictions?



U This assumption is overly stringent and will shobiéyrelaxed somewhat. It is nonetheless a sufficient
assumption, and it is made often.

12l Because | have rounded the means to three decimal,pfaeesis rounding error in the answers. The answers
given here have been based on more decimal places.

Bl Both SPSS and SAS continue to calculate the wrongeviat the Huynh-Feldt epsilon.

¥l The authors used a logarithmic transformation here be¢aasriginal data were very positively skewed. They
took the log of X + 1) instead oK because log(0) is not defined.

Bl As in earlier tables of expected mean squares, we e€etho refer to the variance of random terms htb
refer to the variability of fixed terms. Subjects always treated as random, whereas in this study thenauo
independent variables are fixed.

1l For those who want to see the calculations, theesponding pages from the previous edition can be found at
www.uvm.edu/~dhowell/methods/whateverlcallit.ntml.

1 In previous editions | used the MANOVA approach underSBBivariate/Repeated measures as a way of
avoiding assumptions of compound symmetry. This approachraeequire compound symmetry, but it does
require balanced designs. | have dropped it in favor of thedmodel precisely because the mixed model will
handle missing data much better.

Bl The following is quick description of using the menu sébes. Selecanalysis/mixed/linear, specify Subj for
the Subjects box and Time for the Repeated box. €beckinue and move to the next screen. Specify the
dependent variable (dv) and the factors (Group and Tiaetgctfixed from the bottom of the box, highlight both
Group and Time and click treeld button, clickcontinue. Now click on theandom button and add Subj to the
bottom box. Then clickaste to make sure that you have syntax similar to whavé gdoove.



