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CHAPTER FOURTEEN 

REPEATED-MEASURES DESIGNS 

  

OBJECTIVES 

To discuss the analysis of variance by considering experimental designs in which the same 

subject is measured under all levels of one or more independent variables. 
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In our discussion of the analysis of variance, we have concerned ourselves with experimental 

designs that have different subjects in the different cells. More precisely, we have been 

concerned with designs in which the cells are independent, or uncorrelated. (Under the 

assumptions of the analysis of variance, independent and uncorrelated are synonymous in this 

context.) In this chapter we are going to be concerned with the problem of analyzing data where 

some or all of the cells are not independent. Such designs are somewhat more complicated to 

analyze, and the formulae because more complex. Most, or perhaps even all, readers will 

approach the problem using computer software such as SPSS or SAS. However, to understand 

what you are seeing, you need to know something about how you would approach the problem 

by hand; and that leads to lots and lots of formulae. I urge you to treat the formulae lightly, and 

not feel that you have to memorize any of them. This chapter needs to be complete, and that 

means we have to go into the analysis at some depth, but remember that you can always come 

back to the formulae when you need them, and don’t worry about the calculations too much until 

you do need them. 

  

If you think of a typical one-way analysis of variance with different subjects serving under the 

different treatments, you would probably be willing to concede that the correlations between 

treatments 1 and 2, 1 and 3, and 2 and 3 have an expectation of zero.  



Treatment 1 Treatment 2 Treatment 3 

   

   
   

   
  

However, suppose that in the design diagrammed here the same subjects were used in all three 

treatments. Thus, instead of 3n subjects measured once, we have n subjects measured three 

times. In this case, we would be hard put to believe that the intercorrelations of the three 

treatments would have expectancies of zero. On the contrary, the better subjects under treatment 

1 would probably also perform well under treatments 2 and 3, and the poorer subjects under 

treatment 1 would probably perform poorly under the other conditions, leading to significant 

correlations among treatments.  

  

This lack of independence among the treatments would cause a serious problem if it were not for 

the fact that we can separate out, or partition, and remove the dependence imposed by repeated 

measurements on the same subjects. (To use a term that will become much more familiar in 

Chapter 15, we can say that we are partialling out effects that cause the dependence.) In fact, 

one of the main advantages of repeated-measures designs is that they allow us to reduce overall 

variability by using a common subject pool for all treatments, and at the same time allow us to 

remove subject differences from our error term, leaving the error components independent from 

treatment to treatment or cell to cell.  

  

As an illustration, consider the highly exaggerated set of data on four subjects over three 

treatments presented in Table 14.1. Here the dependent variable is the number of trials to 

criterion on some task. If you look first at the treatment means, you will see some slight 



differences, but nothing to get too excited about. There is so much variability within each 

treatment that it would at first appear that the means differ only by chance. But look at the 

subject means. It is apparent that subject 1 learns quickly under all conditions, and that subjects 3 

and 4 learn remarkably slowly. These differences among the subjects are producing most of the 

differences within treatments, and yet they have nothing to do with the treatment effect. If we 

could remove these subject differences we would have a better (and smaller) estimate of error. At 

the same time, it is the subject differences that are creating the high positive intercorrelations 

among the treatments, and these too we will partial out by forming a separate term for subjects. 

  

Table 14.1 Hypothetical data for simple repeated-measures designs 

  Treatment   
Subject 1 2 3 Mean 
1 
2 
3 
4 

2 
10 
22 
30 

4 
12 
29 
31 

7 
13 
30 
34 

4.33 
11.67 
27.00 
31.67 

Mean 16 19 21 18.67 
  

  

One laborious way to do this would be to put all the subjects’ contributions on a common footing 

by equating subject means without altering the relationships among the scores obtained by that 

particular subject. Thus, we could set , where  is the mean of the ith subject. 

Now subjects would all have the same means ( ), and any remaining differences among 

the scores could be attributable only to error or to treatments. Although this approach would 

work, it is not practical. An alternative, and easier, approach is to calculate a sum of squares 

between subjects (denoted as either or ) and remove this from  before we 



begin. This can be shown to be algebraically equivalent to the first procedure and is essentially 

the approach we will adopt.  

  

The solution is represented diagrammatically in Figure 14.1. Here we partition the overall 

variation into variation between subjects and variation within subjects. We do the same with the 

degrees of freedom. Some of the variation within a subject is attributable to the fact that his 

scores come from different treatments, and some is attributable to error; this further partitioning 

of variation is shown in the third line of the figure. We will always think of a repeated-measures 

analysis as first partitioning the  into  and . Depending on the 

complexity of the design, one or both of these partitions may then be further partitioned. 

  

  

  

  

  

  

  

 
 
Figure 14.1  Partition of sums of squares and degrees of freedom 

  

The following discussion of repeated-measures designs can only begin to explore the area. For 

historical reasons, the statistical literature has underemphasized the importance of these designs. 

As a result, they have been developed mostly by social scientists, particularly psychologists. By 
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far the most complete coverage of these designs is found in Winer, Brown, and Michels (1991). 

Their treatment of repeated-measures designs is excellent and extensive, and much of this 

chapter reflects the influence of Winer’s work. 

  

14.1.    THE STRUCTURAL MODEL 

  

First, some theory to keep me happy. Two structural models could underlie the analysis of data 

like those shown in Table 14.1. The simplest model is 

 

where 

 

The variables are assumed to be independently and normally distributed around zero 

within each treatment. Their variances,  and , are assumed to be homogeneous across 

treatments. (In presenting expected means square, I am using the notation developed in the 

preceding chapters. The error term and subject factor are considered to be random, so those 

variances are presented as    and . (Subjects are always treated as random.) However the 

treatment factor is generally a fixed factor, so its variation is denoted as ) With these 

assumptions it is possible to derive the expected mean squares shown in Model I of Table 14.2. 

  



Table 14.2 Expected mean squares for simple repeated-measures designs 

Model I 

 

Model II 

 
 

Source E(MS) 
Subjects 

Treatments 

Error 
  

  
Source E(MS) 
Subjects 

Treatments 

Error 
  

  

An alternative and probably more realistic model is given by 

 

Here we have added a Subject × Treatment interaction term to the model, which allows different 

subjects to change differently over treatments. The assumptions of the first model will continue 

to hold, and we will also assume the  to be distributed around zero independently of the other 

elements of the model. This second model gives rise to the expected mean squares shown in 

Model II of Table 14.2.  

  

The discussion of these two models and their expected mean squares may look as if it is designed 

to bury the solution to a practical problem (comparing a set of means) under a mountain of 

statistical theory. However, it is important to an explanation of how we will run our analyses and 

where our tests come from. You’ll need to bear with me only a little longer. 

  



14.2.    F RATIOS 

  

The expected mean squares in Table 14.2 indicate that the model we adopt influences the F 

ratios we employ. If we are willing to assume that there is no Subject × Treatment interaction, 

we can form the following ratios: 

 

and 

 

Given an additional assumption about sphericity, which we will discuss in the next section, both 

of these lead to respectable F ratios that can be used to test the relevant null hypotheses.  

  

Usually, however, we are cautious about assuming that there is no Subject × Treatment 

interaction. In much of our research it seems more reasonable to assume that different subjects 

will respond differently to different treatments, especially when those “treatments” correspond to 

phases of an ongoing experiment. As a result we usually prefer to work with the more complete 

model.  

  

The full model (which includes the interaction term) leads to the following ratios: 

 

and 



 

  

Although the resulting F for treatments is appropriate, the F for subjects is biased. If we did form 

this latter ratio and obtained a significant F, we would be fairly confident that subject differences 

really did exist. However, if the F were not significant, the interpretation would be ambiguous. A 

nonsignificant F could mean either that or that . Because we usually 

prefer this second model, and hate ambiguity, we seldom test the effect due to Subjects. This 

represents no great loss, however, since we have little to gain by testing the Subject effect. The 

main reason for obtaining  in the first place is to absorb the correlations between 

treatments and thereby remove subject differences from the error term. A test on the Subject 

effect, if it were significant, would merely indicate that people are different—hardly a 

momentous finding. The important thing is that both underlying models show that we can 

use as the denominator to test the effect of treatments. 

  

14.3.    THE COVARIANCE MATRIX 

  

A very important assumption that is required for any F ratio in a repeated-measures design to be 

distributed as the central (tabled) F is that of compound symmetry of the covariance matrix.[1] To 

understand what this means, consider a matrix () representing the covariances among the three 

treatments for the data given in Table 14.1. 

  



 

  

On the main diagonal of this matrix are the variances within each treatment ( ). Notice that 

they are all more or less equal, indicating that we have met the assumption of homogeneity of 

variance. The off-diagonal elements represent the covariances among the treatments 

( ). Notice that these are also more or less equal. (The fact that they are 

also of the same magnitude as the variances is irrelevant, reflecting merely the very high 

intercorrelations among treatments.) A pattern of constant variances on the diagonal and constant 

covariances off the diagonal is referred to as compound symmetry. (Again, the relationship 

between the variances and covariances is irrelevant.) The assumption of compound symmetry of 

the (population) covariance matrix (Σ), of which  is an estimate, represents a sufficient 

condition underlying a repeated-measures analysis of variance. The more general condition is 

known as sphericity, and you will often see references to that broader assumption. If we have 

compound symmetry we will meet the sphericity assumption, but it is possible, though not likely 

in practice, to have sphericity without compound symmetry. (Older textbooks generally make 

reference to compound symmetry, even though that is too strict an assumption. In recent years 

the trend has been toward reference to “sphericity,” and that is how we will generally refer to it 

here, though we will return to compound symmetry when we consider mixed models at the end 

of this chapter.) Without this sphericity assumption, the F ratios may not have a distribution 

given by the distribution of F in the tables. Although this assumption applies to any analysis of 

variance design, when the cells are independent the covariances are always zero, and there is no 



problem—we merely need to assume homogeneity of variance. With repeated-measures designs, 

however, the covariances will not be zero and we need to assume that they are all equal. This has 

led some people (e.g., Hays, 1981) to omit serious consideration of repeated-measures designs. 

However, when we do have sphericity, the Fs are valid; and when we do not, we can use either 

very good approximation procedures (to be discussed later in this chapter) or alternative methods 

that do not depend on assumptions about ∑. One alternative procedure that does not require any 

assumptions about the covariance matrix is  multivariate analysis of variance (MANOVA). 

This is a multivariate procedure, which is essentially one that deals with multiple dependent 

variables simultaneously. This procedure, however, requires complete data and is now 

commonly being replaced by analyses of mixed models, which are introduced in Section 14.12. 

  

Many people have trouble thinking in terms of covariances because they don’t have a simple 

intuitive meaning. There is little to be lost by thinking in terms of correlations. If we truly have 

homogeneity of variance, compound symmetry reduces to constant correlations between trials. 

  

14.4.    ANALYSIS OF VARIANCE APPLIED TO RELAXATION THERAPY 

  

As an example of a simple repeated-measures design, we will consider a study of the 

effectiveness of relaxation techniques in controlling migraine headaches. The data described here 

are fictitious, but they are in general agreement with data collected by Blanchard, Theobald, 

Williamson, Silver, and Brown (1978), who ran a similar, although more complex, study.  

  



In this experiment we have recruited nine migraine sufferers and have asked them to record the 

frequency and duration of their migraine headaches. After 4 weeks of baseline recording during 

which no training was given, we had a 6-week period of relaxation training. (Each experimental 

subject participated in the program at a different time, so such things as changes in climate and 

holiday events should not systematically influence the data.) For our example we will analyze 

the data for the last 2 weeks of baseline and the last 3 weeks of training. The dependent variable 

is the duration (hours/week) of headaches in each of those 5 weeks. The data and the calculations 

are shown in Table 14.3.[2] It is important to note that I have identified the means with a subscript 

naming the variable. Thus instead of using the standard “dot notation” (e.g.,  for the Week 

means), I have used the letter indicating the variable name as the subscript (e.g., the means for 

Weeks are denoted W and the means for Subjects are denoted S).  As usual, the grand mean 

is denoted .., and X represents the individual observations. 

  

Table 14.3 Analysis of data on migraine headaches. 

(a) Data 

  Baseline Training   
Subject Week 1 Week 2 Week 3 Week 4 Week 5 Subject 

Means 
1 
2 
3 
4 
5 
6 
7 
8 
9 

21 
20 
17 
25 
30 
19 
26 
17 
26 

22 
19 
15 
30 
27 
27 
16 
18 
24 

8 
10 
5 
13 
13 
8 
5 
8 
14 

6 
4 
4 
12 
8 
7 
2 
1 
8 

6 
4 
5 
17 
6 
4 
5 
5 
9 

12.6 
11.4 
9.2 
19.4 
16.8 
13.0 
10.8 
9.8 
16.2 

Week 
Means 

22.333 22.000 9.333 5.778 6.778 13.244 

  



(b) Calculations 

 

(c) Summary table 

Source df SS MS F 
Between subjects 
Within subjects 
      Weeks 
      Error 

8 
36 
4 
32 

486.71 
2679.60 
2449.20 
230.40 

  
  
612.30 
7.20 

  
85.04* 

Total 44 3166.31     
* p < .05 

  

Look first at the data in Table 14.3a. Notice that there is a great deal of variability, but much of 

that variability comes from the fact that some people have more and/or longer-duration 

headaches than do others, which really has very little to do with the intervention program. As I 

have said, what we are able to do with a repeated-measures design but were not able to do with 

between-subjects designs is to remove this variability from , producing a smaller

than we would otherwise have.  

  

From Table 14.3b you can see that  is calculated in the usual manner. Similarly, 

and  are calculated just as main effects always are [take the sum of the squared deviations 

from the grand mean and multiply by the appropriate constant (i.e., the number of observations 



contributing to each mean)]. Finally, the error term is obtained by subtracting  and 

 from .  

  

The summary table is shown in Table 14.3c and looks a bit different from ones you have seen 

before. In this table I have made a deliberate split into Between-Subject factors and Within-

Subject factors. The terms for Weeks and Error are parts of the Within-Subject term, and so are 

indented under it. (In this design the Between-Subject factor is not further broken down, which is 

why nothing is indented under it. But wait a few pages and you will see that happen too.) Notice 

that I have computed an F for Weeks but not for subjects, for the reasons given earlier. The F 

value for Weeks is based on 4 and 32 degrees of freedom, and . We can 

therefore reject H0: 1 = 2 = … = 5 and conclude that the relaxation program led to a 

reduction in the duration per week of headaches reported by subjects. Examination of the means 

in Table 14.3 reveals that during the last three weeks of training, the amount of time per week 

involving headaches was about one-third of what it was during baseline.  

  

You may have noticed that no Subject × Weeks interaction is shown in the summary table. With 

only one score per cell, the interaction term is the error term, and in fact some people prefer to 

label it S × W instead of error. To put this differently, in the design discussed here it is 

impossible to separate error from any possible Subject × Weeks interaction, because they are 

completely confounded. As we saw in the discussion of structural models, both of these effects, 

if present, are combined in the expected mean square for error.  

  



I spoke earlier of the assumption of sphericity, or compound symmetry. For the data in the 

example, the variance–covariance matrix follows, represented by the notation, where the ^ is 

used to indicate that this is an estimate of the population variance–covariance matrix Σ. 

  

21.000 11.750 9.250 7.833 7.333 
11.750 28.500 13.750 16.375 13.375 
9.250 13.750 11.500 8.583 8.208 
7.833 16.375 8.583 11.694 10.819 

 

7.333 13.375 8.208 10.819 16.945 
  

Visual inspection of this matrix suggests that the assumption of sphericity is reasonable. The 

variances on the diagonal range from 11.5 to 28.5, whereas the covariances off the diagonal 

range from 7.333 to 16.375. Considering that we have only nine subjects, these values represent 

an acceptable level of constancy. (Keep in mind that the variances do not need to be equal to the 

covariances; in fact, they seldom are.) A statistical test of this assumption of sphericity was 

developed by Mauchly (1940) and is given in Winer (1971, p. 596). It would in fact show that 

we have no basis for rejecting the sphericity hypothesis. Box (1954b), however, showed that 

regardless of the form of ∑, a conservative test on null hypotheses in the repeated-measures 

analysis of variance is given by comparing  against —that is, by acting as though 

we had only two treatment levels. This test is exceedingly conservative, however, and for most 

situations you will be better advised to evaluate F in the usual way. We will return to this 

problem later when we consider a much better solution found in Greenhouse and Geisser’s 

(1959) extension of Box’s work.  

  



As already mentioned, one of the major advantages of the repeated-measures design is that it 

allows us to reduce the error term by using the same subject for all treatments. Suppose for a 

moment that the data illustrated in Table 14.3 had actually been produced by five independent 

groups of subjects. For such an analysis,  would equal 717.11. In this case, we would not 

be able to pull out a subject term because would be synonymous with . (A 

subject total and an individual score are identical.) As a result, differences among subjects would 

be inseparable from error, and in fact  would be the sum of what, for the repeated-measures 

design, are and ( = 230.4 + 486.71 = 717.11 on 32 + 8 = 40 df). This would lead 

to 

 

which, although still significant, is less than one-half of what it was in Table 14.3.  

  

To put it succinctly, subjects differ. When subjects are observed only once, these subject 

differences contribute to the error term. When subjects are observed repeatedly, we can obtain an 

estimate of the degree of subject differences and partial these differences out of the error term. In 

general, the greater the differences among subjects, the higher the correlations between pairs of 

treatments. The higher the correlations among treatments, the greater the relative power of 

repeated-measures designs.  

  

We have been speaking of the simple case in which we have one independent variable (other 

than subjects) and test each subject on every level of that variable. In actual practice, there are 

many different ways in which we could design a study using repeated measures. For example, 



we could set up an experiment using two independent variables and test each subject under all 

combinations of both variables. Alternatively, each subject might serve under only one level of 

one of the variables, but under all levels of the other. If we had three variables, the possibilities 

are even greater. In this chapter we will discuss only a few of the possible designs. If you 

understand the designs discussed here, you should have no difficulty generalizing to even the 

most complex problems. 

  

14.5.    CONTRASTS AND EFFECT SIZES IN REPEATED MEASURES 

DESIGNS 

  

As we did in the case of one-way and factorial designs, we need to consider how to run contrasts 

among means of repeated measures variables. Fortunately there is not really much that is new 

here. We will again be comparing the mean of a condition or set of conditions against the mean 

of another condition or set of conditions, and we will be using the same kinds of coefficients that 

we have used all along. 

  

In our example the first two weeks were Baseline measures, and the last three weeks were 

Training measures. Our omnibus F told us that there were statistically significant differences 

among the five Weeks, but not where those differences lie. Now I would like to contrast the 

means of the set of Baseline weeks with the mean of the set of Training weeks. The coefficients 

that will do this are shown below, along with the means. 

       



  Week 1 Week 2 Week 3 Week 4 Week 5 

Coefficient 1/2 1/2 -1/3 -1/3 -1.3 

Mean 22.333 22.000 9.333 5.778 6.778 

  

Just as we have been doing, we will define our contrast as 

       

We can test this contrast with either a t or an F, but I will use t here. (F is just the square of t.) 

       

This is a t on dferror =32 df, and is clearly statistically significant. 

  

Notice that in calculating my t I used the MSerror from the overall analysis. And this was the same 

error term that was used to test the Weeks effect. I point that out only because when we come to 

more complex analyses we will have multiple error terms, and the one to use for a specific 

contrast is the one that was used to test the main effect of that independent variable. 

  

Effect sizes 

Although there was a direct translation from one-way designs to repeated measures designs in 

terms of testing contrasts among means, the situation is a bit more complicated when it comes to 

estimating effect sizes. We will continue to define our effect size as 



       

There should be no problem with , because it is the same contrast that we computed above—

the difference between the mean of the baseline weeks and the mean of the training weeks. But 

there are several choices for serror. Kline (2004) gives 3 possible choices for our denominator, but 

points out that two of these are unsatisfactory either because they ignore the correlation between 

weeks or because they standardize  by a standard deviation that is not particularly meaningful. 

What we will actually do is create an error term that is unique to the particular contrast. We will 

form a contrast for each subject. That means that for each subject we will calculate the difference 

between his mean on the baseline weeks and his mean on the training weeks. These are 

difference scores, which are analogous to the difference scores we computed for a paired sample 

t test. The standard deviation of these difference scores is analogous to the denominator we 

discussed for computing effect size with paired data when we just had two repeated measures 

with the t test. It is important to note that there is room for argument about the proper term to use 

to standardize contrasts with repeated measures. See Kline (2004) and Olejnik & Algina (2000). 

  

For our migraine example the first subject would have a difference score of (21 + 22)/2 – (8 + 6 

+ 6)/3 = 21.5 – 6.667 = 14.833. The complete set of difference scores would be 

[14.833, 13.500, 11.333, 13.500, 19.500, 16.667, 17.000, 12.833, 14.667] 

The mean of these difference scores is 14.879, which is . The standard deviation of these 

difference scores is 2.49. Then our effect size measure is 

       



This tells us that the severity of headaches during baseline is nearly 6 standard deviations greater 

than the severity of head aches during training. That is a very large difference, and we can see 

that just by looking at the data. Remember, in calculating this effect size we have eliminated the 

variability between participants (subjects) in terms of headache severity. We are in a real sense 

comparing each individual to him/her self. 

  

14.6.    WRITING UP THE RESULTS 

In writing up the results of this experiment we could simply say 

To investigate the effects of relaxation therapy on the severity of migraine headaches, 9 

participants rated the severity of headaches on each of two weeks before receiving 

relaxation therapy and for three weeks while receiving therapy. An overall analysis of 

variance for repeated measures showed a significant difference between weeks (F(4,32) = 

85.04, p < .05). The mean severity rating during baseline weeks was 22.166, which 

dropped to a mean of 7.296 during training, for a difference of 14.87. A contrast on this 

difference was significant (t(32) = 18.21, p < .05). Using the standard deviation of 

contrast differences for each participant produced an effect size measure of d = 5.97, 

documenting the importance of relaxation therapy in treating migraine headaches.  

  

14.7.    ONE BETWEEN-SUBJECTS VARIABLE AND ONE WITHIN-

SUBJECTS VARIABLE 

  

Consider the data presented in Table 14.4. These are actual data from a study by King (1986). 

This study in some ways resembles the one on morphine tolerance by Siegel (1975) that we 



examined in Chapter 12. King investigated motor activity in rats following injection of the drug 

midazolam. The first time that this drug is injected, it typically leads to a distinct decrease in 

motor activity. Like morphine, however, a tolerance for midazolam develops rapidly. King 

wished to know whether that acquired tolerance could be explained on the basis of a conditioned 

tolerance related to the physical context in which the drug was administered, as in Siegel’s work. 

He used three groups, collecting the crucial data (presented in Table 14.4) on only the last day, 

which was the test day. During pretesting, two groups of animals were repeatedly injected with 

midazolam over several days, whereas the Control group was injected with physiological saline. 

On the test day, one group—the “Same” group—was injected with midazolam in the same 

environment in which it had earlier been injected. The “Different” group was also injected with 

midazolam, but in a different environment. Finally, the Control group was injected with 

midazolam for the first time. This Control group should thus show the typical initial response to 

the drug (decreased ambulatory behavior), whereas the Same group should show the normal 

tolerance effect—that is, they should decrease their activity little or not at all in response to the 

drug on the last trial. If King is correct, however, the Different group should respond similarly to 

the Control group, because although they have had several exposures to the drug, they are 

receiving it in a novel context and any conditioned tolerance that might have developed will not 

have the necessary cues required for its elicitation. The dependent variable in Table 14.4 is a 

measure of ambulatory behavior, in arbitrary units. Again, the first letter of the name of a 

variable is used as a subscript to indicate what set of means we are referring to. 

  



Table 14.4  Ambulatory behavior by Group and Trial 

(a) Data 

  Interval   
    1 2 3 4 5 6 Mean 
Control   150 

335 
149 
159 
159 
292 
297 
170 

44 
270 
52 
31 
0 
125 
187 
37 

71 
156 
91 
127 
35 
184 
66 
42 

59 
160 
115 
212 
75 
246 
96 
66 

132 
118 
43 
71 
71 
225 
209 
114 

74 
230 
154 
224 
34 
170 
74 
81 

88.333 
211.500 
100.667 
137.333 
62.333 
207.000 
154.833 
85.000 

  Mean 213.875 
  

93.250 96.500 128.625 122.875 130.125 130.875 

Same   346 
426 
359 
272 
200 
366 
371 
497 

175 
329 
238 
60 
271 
291 
364 
402 

177 
236 
183 
82 
263 
263 
270 
294 

192 
76 
123 
85 
216 
144 
308 
216 

239 
102 
183 
101 
241 
220 
219 
284 

140 
232 
30 
98 
227 
180 
267 
255 

211.500 
233.500 
186.000 
116.333 
236.333 
244.000 
299.833 
324.667 

  Mean 354.625 
  

266.250 221.000 170.000 198.625 178.625 231.521 

Different   282 
317 
362 
338 
263 
138 
329 
292 

186 
31 
104 
132 
94 
38 
62 
139 

225 
85 
144 
91 
141 
16 
62 
104 

134 
120 
114 
77 
142 
95 
6 
184 

189 
131 
115 
108 
120 
39 
93 
193 

169 
205 
127 
169 
195 
55 
67 
122 

197.500 
148.167 
161.000 
152.500 
159.167 
63.500 
103.167 
172.333 

  Mean 290.125 98.250 108.500 109.000 123.500 138.625 144.667 
  

  Interval 
mean 

286.208 152.583 142.000 135.875 148.333 149.125 169.021 

  



(b) Calculations 

  

 

(c) Summary Table 

Source df SS MS F 
Between subjects 
     Groups 
     Ss w/in groups** 
  
Within subjects** 
     Intervals 
     I × G 
     I × Ss w/in groups** 

23 
   2 
21 
  
120 
5 
10 
105 

670,537.1 
285,815.0 
384,722.0 
  
761,755.8 
399,736.5 
80,820.0 
281,199.3 

  
142,907.5 
18,320.1 
  
  
79,947.3 
8,082.0 
2,678.1 

  
7.80* 
  
  
  
29.85* 
3.02* 

Total 143 1,432,292.9     
* p < .05; ** Calculated by subtraction 

  

Because the drug is known to be metabolized over a period of approximately 1 hour, King 

recorded his data in 5-minute blocks, or Intervals. We would expect to see the effect of the drug 

increase for the first few intervals and then slowly taper off. Our analysis uses the first six blocks 

of data. The design of this study can then be represented diagrammatically as  

  

  



  

  

  

  

  

  

  

 
 
Here we have distinguished those effects that represent differences between subjects from those 

that represent differences within subjects. When we consider the between-subjects term, we can 

partition it into differences between groups of subjects (G) and differences between subjects in 

the same group (Ss w/in groups). The within-subject term can similarly be subdivided into three 

components—the main effect of Intervals (the repeated measure) and its interactions with the 

two partitions of the between-subject variation. You will see this partitioning represented in the 

summary table when we come to it. 

  

Partitioning the between-subjects effects 

  



Let us first consider the partition of the between-subjects term in more detail. From the design of 

the experiment, we know that this term can be partitioned into two parts. One of these parts is the 

main effect of Groups (G), since the treatments (Control, Same, and Different) involve different 

groups of subjects. This is not the only source of differences among subjects, however. We have 

eight different subjects within the control group, and differences among them are certainly 

between-subjects differences. The same holds for the subjects within the other groups. Here we 

are speaking of differences among subjects in the same group—that is, Ss within groups.  

  

If we temporarily ignore intervals entirely (e.g., we simply collect our data over the entire 

session rather than breaking it down into 5-minute intervals), we can think of the study as 

producing the following data:  

  

Control Same Different 
88.333 211.500 197.500 
211.500 233.500 148.167 
100.667 186.000 161.000 
137.333 116.333 152.500 
62.333 236.333 159.167 
207.000 244.000 63.500 
154.833 299.833 103.167 
85.000 324.667 172.333 
130.875 231.521  144.667 

    
  

where the “raw scores” in this table are the subject means from Table 14.4. Because each subject 

is represented only once in these totals, the analysis we will apply here is the same as a one-way 

analysis of variance on independent groups. Indeed, except for a constant representing the 

number of scores per subject (which cancels out in the end), the sums of squares for the simple 

one-way on these data would be the same as those in the actual analysis. The F that tests the 



main effect of Groups if this were a simple one-way on subject totals would be equal to the one 

that we will obtain from the full analysis. Thus, the between-subjects partition of the total 

variation can be seen as essentially a separate analysis of variance, with its own error term 

(sometimes referred to as ) independent of the within-subject effects. 

  

Partitioning the within-subjects effects 

  

Next consider the within-subjects element of the partition of .  As we have already seen, 

this is itself partitioned into three terms. A comparison of the six intervals involves comparisons 

of scores from the same subject, and thus Intervals is a within-subjects term—it depends on 

differences within each subject. Since Intervals is a within-subjects term, the interaction of 

Intervals with Groups is also a within-subjects effect. The third term (Intervals × Ss within 

groups) is sometimes referred to as since it is the error term for the within-subjects 

effects. The  term is actually the sum of the sums of squares for the I × S 

interactions calculated separately for each group. Thus, it can be seen as logically equivalent to 

the error term used in the previous design. 

  

The analysis 

  

Before considering the analysis in detail, it is instructive to look at the general pattern of results. 

Although there are not enough observations in each cell to examine the distributions in any 

serious way, it is apparent that on any given interval there is substantial variability within groups. 



For example, for the second interval in the control group, scores range from 0 to 270. There do 

not appear to be any extreme outliers, however, as often happens in this kind of research, and the 

variances within cells, although large, are approximately equal. You can also see that there are 

large individual differences, with some of the animals consistently showing relatively little 

ambulatory behavior and some showing a great deal. These are the kinds of differences that will 

be partialled out by our analysis. Looking at the Interval means, you will see that, as expected, 

behavior decreased substantially after the first 5-minute interval and then increased slightly 

during the rest of the session. Finally, looking at the difference between the means for the 

Control and Same groups, you will see the anticipated tolerance effect, and looking at the 

Different group, you see that it is much more like the Control group than it is like the Same 

group. This is the result that King predicted.  

  

Very little needs to be said about the actual calculations in Table 14.4b, since they are really no 

different from the usual calculations of main and interaction effects. Whether a factor is a 

between-subjects or within-subjects factor has no bearing on the calculation of its sum of 

squares, although it does affect its placement in the summary table and the ultimate calculation 

of the corresponding F.  

  

In the summary table in Table 14.4c, the source column reflects the design of the experiment, 

with  first partitioned into  and . Each of these sums of squares is further 

subdivided. The double asterisks next to the three terms show we calculate these by subtraction 

( , , and ), based on the fact that sums of squares are additive 

and the whole must be equal to the sum of its parts. This simplifies our work considerably. Thus 



 

These last two terms will become error terms for the analysis.  

  

The degrees of freedom are obtained in a relatively straightforward manner. For each of the main 

effects, the number of degrees of freedom is equal to the number of levels of the variable minus 

1. Thus, for Subjects there are 24 - 1 = 23 df, for Groups there are 3 - 1 = 2 df, and for Intervals 

there are 6 - 1 = 5 df. As for all interactions, the df for I × G is equal to the product of the df for 

the component terms. Thus, . The easiest way to obtain the remaining 

degrees of freedom is by subtraction, just as we did with the corresponding sums of squares. 

 

These df can also be obtained directly by considering what these terms represent. Within each 

subject, we have 6 - 1 = 5 df. With 24 subjects, this amounts to . Within 

each level of the Groups factor, we have 8 - 1 = 7 df between subjects, and with three Groups we 

have . I × Ss w/in groups is really an interaction term, and as such its df is 

simply the product of  and .  

  

Skipping over the mean squares, which are merely the sums of squares divided by their degrees 

of freedom, we come to F. From the column of F it is apparent that, as we anticipated, Groups 

and Intervals are significant. The interaction is also significant, reflecting, in part, the fact that 



the Different group was at first intermediate between the Same and the Control group, but that by 

the second 5-minute interval it had come down to be equal to the Control group. This finding can 

be explained by a theory of conditioned tolerance. The really interesting finding is that, at least 

for the later intervals, simply injecting an animal in an environment different from the one in 

which it had been receiving the drug was sufficient to overcome the tolerance that had 

developed. These animals respond almost exactly as do animals that had never experienced 

midazolam. We will return to the comparison of Groups at individual Intervals later. 

  

Assumptions 

  

For the F ratios actually to follow the F distribution, we must invoke the usual assumptions of 

normality, homogeneity of variance, and sphericity of . For the between-subjects term(s), this 

means that we must assume that the variance of subject means within any one level of Group is 

the same as the variance of subject means within every other level of Group. If necessary, this 

assumption can be tested by calculating each of the variances and testing using 

either or, preferably, the test proposed by Levene (1960) or O’Brien (1981), 

which were referred to in Chapter 7. In practice, however, the analysis of variance is relatively 

robust against reasonable violations of this assumption (see Collier, Baker, and Mandeville, 

1967; and Collier, Baker, Mandeville, and Hayes, 1967). Because the groups are independent, 

compound symmetry, and thus sphericity, of the covariance matrix is assured if we have 

homogeneity of variance, since all off-diagonal entries will be zero.  

  



For the within-subjects terms we must also consider the usual assumptions of homogeneity of 

variance and normality. The homogeneity of variance assumption in this case is that the I × S 

interactions are constant across the Groups, and here again this can be tested 

using . (You would simply calculate an I × S interaction for each 

group—equivalent to the error term in Table 14.3—and test the largest against the smallest.) For 

the within-subjects effects, we must also make assumptions concerning the covariance matrix.  

  

There are two assumptions on the covariance matrix (or matrices). Again, we will let 

 represent the matrix of variances and covariances among the levels of I  (Intervals). Thus with 

six intervals, 

  

  I1 I2 I3 I4 I5 I6 
  

11 12 13 14 15 16 
  

21 22 23 24 25 26 

 = 31 32 33 34 35 36 
  

41 42 43 44 45 46 
  

51 52 53 54 55 56 
  

61 62 63 64 65 66 
  

  

For each Group we would have a separate population variance–covariance matrix . (Σ and 

 are estimated by  and , respectively.) For  to be an appropriate error 

term, we will first assume that the individual variance–covariance matrices ( ) are the same 



for all levels of G. This can be thought of as an extension (to covariances) of the common 

assumption of homogeneity of variance.  

  

The second assumption concerning covariances deals with the overall matrix Σ, where Σ is the 

pooled average of the . (For equal sample sizes in each group, an entry in Σ will be the 

average of the corresponding entries in the individual  matrices.) A common and sufficient, 

but not necessary, assumption is that the matrix exhibits compound symmetry—meaning, as I 

said earlier, that all the variances on the main diagonal are equal, and all the covariances off the 

main diagonal are equal. Again, the variances do not have to equal the covariances, and usually 

will not. This assumption is in fact more stringent than necessary. All that we really need to 

assume is that the standard errors of the differences between pairs of Interval means are 

constant—in other words, that is constant for all i and j (j ≠ i). This sphericity requirement 

is met automatically if Σ exhibits compound symmetry, but other patterns of Σ will also have this 

property. For a more extensive discussion of the covariance assumptions, see Huynh and Feldt 

(1970) and Huynh and Mandeville (1979); a particularly good discussion can be found in 

Edwards (1985, pp. 327–329, 336–339). 

  

Adjusting the degrees of freedom 

  

Box (1954a) and Greenhouse and Geisser (1959) considered the effects of departure from this 

sphericity assumption on ∑. They showed that regardless of the form of ∑, the F ratio from the 

within-subjects portion of the analysis of variance will be approximately distributed as F on 



(i - 1)ε, g(n - 1)(i - 1)ε 

df for the Interval effect and 

(g - 1)(i - 1)ε, g(n - 1)(i - 1)ε 

df for the I × G interaction, where i = the number of intervals and ε is estimated by 

 

Here, 

 

  

The effect of using  is to decrease both  and  from what they would normally be. 

Thus  is simply the proportion by which we reduce them. Greenhouse and Geisser 

recommended that we adjust our degrees of freedom using. They further showed that when the 

sphericity assumptions are met, ε = 1, and as we depart more and more from sphericity, ε 

approaches 1/(i - 1) as a minimum.  

  

There is some suggestion that for large values of ε, even using to adjust the degrees of freedom 

can lead to a conservative test. Huynh and Feldt (1976) investigated this correction and 

recommended a modification ofwhen there is reason to believe that the true value of ε lies near 

or above 0.75. Huynh and Feldt, as later corrected by Lecoutre (1991) defined 



 

where N = n × g. (Chen and Dunlap (1994) later confirmed Lecoutre’s correction to the original 

Huynh and Feldt formula.[3] )We then useor , depending on our estimate of the true value of ε. 

(Under certain circumstances, will exceed 1, at which point it is set to 1.)  

  

A test on the assumption of sphericity has been developed by Mauchly (1940) and evaluated by 

Huynh and Mandeville (1979) and by Keselman, Rogan, Mendoza, and Breen (1980), who point 

to its extreme lack of robustness. This test is available on SPSS, SAS, and other software, and is 

routinely printed out. Because tests of sphericity are likely to have serious problems when we 

need them the most, it has been suggested that we always use the correction to our degrees of 

freedom afforded byor , whichever is appropriate, or use a multivariate procedure to be 

discussed later. This is a reasonable suggestion and one worth adopting.  

  

For our data, the F value for Intervals (F = 29.85) is such that its interpretation would be the 

same regardless of the value of ε, since the Interval effect will be significant even for the lowest 

possible df. If the assumption of sphericity is found to be invalid, however, alternative treatments 

would lead to different conclusions with respect to the I × G interaction. For King’s data, the 

Mauchly’s sphericity test, as found from SPSS, indicates that the assumption has been violated, 

and therefore it is necessary to deal with the problem resulting from this violation.  

  

We can calculateand  and evaluate F on the appropriate df. The pooled variance–covariance 

matrix (averaged across the separate matrices) is presented in Table 14.5. (I have not presented 



the variance–covariance matrices for the several groups because they are roughly equivalent and 

because each of the elements of the matrix is based on only eight observations.)  

  

From Table 14.5 we can see that our values of  and  are .6569 and .7508, respectively. Since 

these are in the neighborhood of .75, we will follow Huynh and Feldt’s suggestion and use. In 

this case, the degrees of freedom for the interaction are 

(g - 1)(i - 1)(.7508) = 7.508 

and 

g(n - 1)(i - 1)(.7508) = 78.834 

The exact critical value of , which means that we will reject the null 

hypothesis for the interaction. Thus, regardless of any problems with sphericity, all the effects in 

this analysis are significant. (They would also be significant if we used  instead of .) 

  

Table 14.5  Variance-covariance matrix and calculation of  and  

  Interval   
  1 2 3 4 5 6 Mean 

  6388.173 
4696.226 
2240.143 
681.649 
2017.726 
1924.066 

4696.226 
7863.644 
4181.476 
2461.702 
2891.524 
3531.869 

2240.143 
4181.476 
3912.380 
2696.690 
2161.690 
3297.762 

681.649 
2461.702 
2696.690 
4601.327 
2248.600 
3084.589 

2017.726 
2891.524 
2161.690 
2248.600 
3717.369 
989.310 

1924.066 
3531.869 
3297.762 
3084.589 
989.310 
5227.649 

2991.330 
4271.074 
3081.690 
2629.093 
2337.703 
3009.208 

  



 

Simple effects 

  

The Interval × Group interaction is plotted in Figure 14.2; the interpretation of the data is 

relatively clear. It is apparent that the Same group consistently performs above the level of the 

other two groups—that is, the conditioned tolerance to midazolam leads to greater activity in that 

group than in the other groups. It is also clear that activity decreases noticeably after the first 5-

minute interval (during which the drug is having its greatest effect). The interaction appears to be 

produced by the fact that the Different group is intermediate between the other two groups 

during the first interval, but it is virtually indistinguishable from the Control group thereafter. In 

addition, the Same group continues declining until at least the fourth interval, whereas the other 



two groups drop precipitously and then level off. Simple effects will prove useful in interpreting 

these results, especially in terms of examining group differences during the first and the last 

intervals. Simple effects will also be used to test for differences between intervals within the 

Control group, but only for purposes of illustration—it should be clear that Interval differences 

exist within each group. 

  

 

Figure 14.2  Interval × Group interaction for data from Table 14.4 

  

As I have suggested earlier, the Greenhouse and Geisser and the Huynh and Feldt adjustments to 

degrees of freedom appear to do an adequate job of correcting for problems with the sphericity 

assumption when testing for overall main effects or interactions. However, a serious question 

about the adequacy of the adjustment arises when we consider within-subjects simple effects 

(Boik, 1981; Harris, 1985). The traditional approach to testing simple effects (see Howell, 1987) 



involves testing individual within-subjects contrasts against a pooled error term ( ). 

If there are problems with the underlying assumption, this error term will sometimes 

underestimate and sometimes overestimate what would be the proper denominator for F, playing 

havoc with the probability of a Type I error. For that reason we are going to adopt a different, 

and in some ways simpler, approach.  

  

The approach we will take follows the advice of Boik that a separate error term be derived for 

each tested effect. Thus, when we look at the simple effect of Intervals for the Control condition, 

for example, the error term will speak specifically to that effect and will not pool other error 

terms that apply to other simple effects. In other words, it will be based solely on the Control 

group. We can test the Interval simple effects quite easily by running separate repeated-measures 

analyses of variance for each of the groups. For example, we can run a one-way repeated-

measures analysis on Intervals for the Control group, as discussed in Section 14.4. We can then 

turn around and perform similar analyses on Intervals for the Same and Different groups 

separately. These results are shown in Table 14.6. In each case the Interval differences are 

significant, even after we correct the degrees of freedom using  or , whichever is appropriate.  

  

Table 14.6 Calculation of within-subjects simple effects for data from King (1986) 

  

(a) Interval at Control 

Source df  SS MS F 
Between subjects 
Interval 
Error 

7 
5 
35 

134,615.58 
76,447.25 
93,998.42 

  
15,289.45 
2685.67 

  
5.69* 

Total 47 305,061.25     



*p < .05;  = .404;  = .570 

(b) Interval at Same 

Source df  SS MS F 
Between subjects 
Interval 
Error 

7 
5 
35 

175,600.15 
193,090.85 
121,714.98 

  
38,618.17 
3477.57 

  
11.10* 

Total 47 490,405.98     

*p < .05;  = .578;  = 1.00 

(c) Interval at Different 

Source df  SS MS F 
Between subjects 
Interval 
Error 

7 
5 
35 

74,506.33 
211,018.42 
65,485.92 

  
42,203.68 
1871.03 

  
22.56* 

Total 47 351,010.67     

*p < .05;  = .598;  = 1.00 

  

If you look at the within-subject analyses in Table 14.6, you will see that the average is 

(2685.669 + 3477.571 + 1871.026)/3 = 2678.089, which is  from the overall 

analysis found on page xxx. Here these denominators for the F ratios are noticeably different 

from what they would have been had we used the pooled term, which is the traditional approach. 

You can also verify with a little work that the  terms for each analysis are the same as 

those that we would compute if we followed the usual procedures for obtaining simple effects 

mean squares.  

  

For the between-subjects simple effects (e.g., Groups at Interval 1) the procedure is more 

complicated. Although we could follow the within-subject example and perform separate 



analyses at each Interval, we would lose considerable degrees of freedom unnecessarily. Here it 

is usually legitimate to pool error terms, and it is generally wise to do so. 

  

For this example we will examine the simple effects of Group at Interval 1 and Group at Interval 

6. The original data can be found in Table 14.4 on page xxx. The sums of squares for these 

effects are   

 

  

Testing the simple effects of between-subjects terms is a little trickier. Consider for a moment 

the simple effect of Group at Interval 1. This is essentially a one-way analysis of variance with 

no repeated measures, since the Group means now represent the average of single—rather than 

repeated—observations on subjects. Thus, subject differences are confounded with experimental 

error. In this case, the appropriate error sum of squares is , where, from Table 14.4, 

 

and 

 

  



It may be easier for you to understand why we need this special  error term if you think 

about what it really represents. If you were presented with only the data for Interval 1 in 

Table 14.4 and wished to test the differences among the three groups, you would run a standard 

one-way analysis of variance, and the  would be the average of the variances within each 

of the three groups. Similarly, if you had only the data from Interval 2, Interval 3, and so on, you 

would again average the variances within the three treatment groups. The  that we have 

just finished calculating is in reality the average of the error terms for these six different sets 

(Intervals) of data. As such, it is the average of the variance within each of the 18 cells.  

  

We can now proceed to form our F ratios. 

 

  

A further difficulty arises in the evaluation of F. Since  also represents the sum of two 

heterogeneous sources of error [as can be seen by examination of the E(MS) for Ss w/in groups 

and I × Ss w/in groups], our F will not be distributed on 2 and 126 df. We will get ourselves out 

of this difficulty in the same way we did when we faced a similar problem concerning t in 

Chapter 7. We will simply calculate the relevant df against which to evaluate F—more precisely, 

we will calculate a statistic denoted asand evaluate  against . In this case, the 

value of  is given by Welch (1938) and Satterthwaite (1946) as 



 

where 

 

and are the corresponding degrees of freedom. For our example, 

 

Rounding to the nearest integer gives = 57. Thus, our F is distributed on (g - 1, ) = (2, 

57) df under . For 2 and 57 df, F.05 = 3.16. Only the difference at Interval 1 is significant. By 

the end of 30 minutes, the three groups were performing at equivalent levels. It is logical to 

conclude that somewhere between the first and the sixth interval the three groups become 

nonsignificantly different, and many people test at each interval to find that point. However, I 

strongly recommend against this practice as a general rule. We have already run a number of 

significance tests, and running more of them serves only to increase the error rate. Unless there is 

an important theoretical reason to determine the point at which the group differences become 

nonsignificant—and I suspect that there are very few such cases—then there is nothing to be 

gained by testing each interval. Tests should be carried out to answer important questions, not to 

address idle curiosity or to make the analysis look “complete.”  

  

Multiple comparisons 



Several studies have investigated the robustness of multiple-comparison procedures for testing 

differences among means on the within-subjects variable. Maxwell (1980) studied a simple 

repeated-measures design with no between-subject component and advised adopting multiple-

comparison procedures that do not use a pooled error term. We discussed such a procedure (the 

Games–Howell procedure) in Chapter 12. (I did use a pooled error term in the analysis of the 

migraine study, but there it was reasonable to assume homogeneity of variance and I was using 

all of the weeks. If I had only been running a contrast involving three of the weeks, I would 

seriously consider calculating an error term based on just the data from those weeks.) 

  

Keselman and Keselman (1988) extended Maxwell’s work to designs having one between-

subject component and made a similar recommendation. In fact, they showed that when the 

Groups are of different sizes and sphericity is violated, familywise error rates can become very 

badly distorted. In the simple effects procedures that we have just considered, I recommended 

using separate error terms by running one-way repeated-measures analyses for each of the 

groups. For subsequent multiple-comparison procedures exploring those simple effects, 

especially with unequal sample sizes, it would probably be wise to employ the Games–Howell 

procedure using those separate covariance matrices. In other words, to compare Intervals 3 and 4 

for the Control group, you would generate your error term using only the Intervals 3 and 4 data 

from just the Control group.  

  

Myers (1979) has suggested making post hoc tests on a repeated measure using paired t-tests and 

a Bonferroni correction. (This is essentially what I did for the migraine example, though a 

Bonferroni correction was not necessary because I ran only one contrast.) Maxwell (1980) 



showed that this approach does a good job of controlling the familywise error rate, and Baker 

and Lew (1987) showed that it generally compared well against Tukey’s test in terms of power. 

Baker proposed a simple modification of the Bonferroni (roughly in line with that of Holm) that 

had even greater power. 

  

  

14.8.    TWO BETWEEN-SUBJECTS VARIABLES AND ONE WITHIN-

SUBJECTS VARIABLE 

  

The basic theory of repeated-measures analysis of variance has already been described in the 

discussion of the previous designs. However, experimenters commonly plan experiments with 

three or more variables, some or all of which represent repeated measures on the same subjects. 

We will briefly discuss the analysis of these designs. The calculations are straight forward, 

because the sums of squares for main effects and interactions are obtained in the usual way and 

the error terms are obtained by subtraction.  

  

We will not consider the theory behind these designs at any length. Essentially, it amounts to the 

extrapolation of what has already been said about the two-variable case. For an excellent 

discussion of the underlying statistical theory see Winer (1971) or Maxwell and Delaney (2004).  

  

I will take as an example a study by St. Lawrence, Brasfield, Shirley, Jefferson, Alleyne, and 

O’Bannon (1995) on an intervention program to reduce the risk of HIV infection among African-

American adolescents. The study involved a comparison of two approaches, one of which was a 



standard 2-hour educational program used as a control condition (EC) and the other was an 8-

week behavioral skills training program (BST). Subjects were Male and Female adolescents, and 

measures were taken at Pretest, Posttest, and 6 and 12 months follow-up (FU6 and FU12). There 

were multiple dependent variables in the study, but the one that we will consider is log(freq + 1), 

where freq is the frequency of condom-protected intercourse[4]. This is a 2 × 2 × 4 repeated-

measures design, with Intervention and Sex as between-subjects factors and Time as the within-

subjects factor. This design may be diagrammed as follows, where represents the ith group of 

subjects.  

  

  Behavioral Skills Training Educational Control 
  Pretest Posttest FU6 FU12 Pretest Posttest FU6 FU12 

Male         
Female 

        
  

The raw data and the necessary summary tables of cell totals are presented in Table 14.7a. 

(These data have been generated to closely mimic the data reported by St. Lawrence et al., 

though they had many more subjects. Decimal points have been omitted.) In Table 14.7b are the 

calculations for the main effects and interactions. Here, as elsewhere, the calculations are carried 

out exactly as they are for any main effects and interactions. 

  



Table 14.7  Data and analysis of study by St. Lawrence et al. (1995) 

(a) Data 

  Male Female 
  Pretest Posttest FU6 FU12 Pretest Posttest FU6 FU12 
  
  
Behavioral 
Skill 
Training 

7 
25 
50 
16 
33 
10 
13 
22 
4 
17 

22 
10 
36 
38 
25 
7 
33 
20 
0 
16 

13 
17 
49 
34 
24 
23 
27 
21 
12 
20 

14 
24 
23 
24 
25 
26 
24 
11 
0 
10 

0 
0 
0 
15 
27 
0 
4 
26 
0 
0 

6 
16 
8 
14 
18 
0 
27 
9 
0 
0 

22 
12 
0 
22 
24 
0 
21 
9 
14 
12 

26 
15 
0 
8 
37 
0 
3 
12 
1 
0 

  
  
  
  
  
Educational 
Control 

  
0 
69 
5 
4 
35 
7 
51 
25 
59 
40 

  
0 
56 
0 
24 
8 
0 
53 
0 
45 
2 

  
0 
14 
0 
0 
0 
9 
8 
0 
11 
33 

  
0 
36 
5 
0 
0 
37 
26 
15 
16 
16 

  
15 
0 
6 
0 
25 
36 
19 
0 
0 
0 

  
28 
0 
0 
0 
28 
22 
22 
0 
0 
0 

  
26 
0 
23 
0 
0 
14 
29 
5 
0 
0 

  
15 
0 
0 
0 
16 
48 
2 
14 
0 
0 

  

Group ×××× Sex ×××× Time means 

    Pretest Posttest FU6 FU12 Mean 
BST 
BST 
EC 
EC 

Male 
Female 
Male 
Female 

19.7 
7.2 
29.5 
10.1 

20.7 
9.8 
18.8 
10.0 

24.0 
13.6 
7.5 
9.7 

18.1 
10.2 
15.1 
9.5 

20.625 
10.200 
17.725 
9.825 

Mean   16.625 14.825 13.700 13.225 14.594 
  



Group ×××× Sex means 

  Male Female Mean 
BST 
EC 

20.625 
17.725 

10.200 
9.825 

15.412 
13.775 

Mean 19.175 10.012 14.594 
(b) Calculations 

 

(c) Summary Table 

Source df  SS MS F 
Between subjects 
     Group (Condition) 
     Sex 
     G × S 
     Ss w/in groups** 

39 
1 
1 
1 
36 

21,490.344 
107.256 
3358.056 
63.757 
17,961.275 

  
107.256 
3358.056 
63.757 
498.924 

  
0.21 
6.73* 
0.13 

Within subjects** 
     Time 
     T × G 
     T × S 
     T × G × S 

120 
3 
3 
3 
3 

13,914.250 
274.069 
1377.819 
779.919 
476.419 

  
91.356 
459.273 
259.973 
158.806 

  
0.90 
4.51* 
2.55 
1.56 



     T × Ss w/in groups** 108 11,006.025 101.908 
Total 159 35,404.594     
*p < .05  **  Obtained by subtraction 

The summary table for the analysis of variance is presented in Table 14.7c. In this table, the ** 

indicate terms that were obtained by subtraction. Specifically, 

 

These last two terms are the error terms for between-subjects and within-subjects effects, 

respectively. That these error terms are appropriate is shown by examining the expected mean 

squares presented in Table 14.8 on page xxx[5]. For the expected mean squares of random and 

mixed models, see Kirk (1968) or Winer (1971).  

  

From the column of F in the summary table of Table 14.7c, we see that the main effect of Sex is 

significant, as is the Time × Group interaction. Both of these results are meaningful. As you will 

recall, the dependent variable is a measure of the frequency of use of condoms (log(freq + 1)). 

Examination of the means reveals adolescent girls report a lower frequency of use than 

adolescent boys. That could mean either that they have a lower frequency of intercourse, or that 

they use condoms a lower percentage of the time. Supplementary data supplied by St. Lawrence 

et al. show that females do report using condoms a lower percentage of the time than males, but 

not enough to account for the difference that we see here. Apparently what we are seeing is a 

reflection of the reported frequency of intercourse.  

  

The most important result in this summary table is the Time × Group interaction. This is 

precisely what we would be looking for. We don’t really care about a Group effect, because we 



would like the groups to be equal at pretest, and that equality would dilute any overall group 

difference. Nor do we particularly care about a main effect of Time, because we expect the 

Control group not to show appreciable change over time, and that would dilute any Time effect. 

What we really want to see is that the BST group increases their use over time, whereas the EC 

group remains constant. That is an interaction, and that is what we found. 

  

Table 14.8  Expected mean squares with A, B, and C fixed 

Source df  SS 
Between subjects 

     A 

     B 

     AB 

     Ss w/in groups 

abn-1 
a-1 

b-1 

(a-1)(b-1) 

ab(n-1) 

  

 
Within subjects 
     C 

     AC 

     BC 

     ABC 

     C × Ss w/in groups 

abn(c-1) 
c-1 

(a-1)(c-1) 

(b-1)(c-1) 

(a-1) (b-1)(c-1) 

ab(n-1)(c-1) 

  

 
Total N-1   
  

  



Simple effects for complex repeated-measures designs 

  

In the previous example we saw that tests on within-subjects effects were occasionally disrupted 

by violations of the sphericity assumption, and we took steps to work around this problem. We 

will have much the same problem with this example.  

  

The cell means plotted in Figure 14.3 reveal the way in which frequency of condom use changes 

over time for the two treatment conditions and for males and females separately. It is clear from 

this figure that the data do not tell a simple story. 

  

 
 

  

Figure 14.3  Frequency of condom use as a function of Sex and Condition 

  

We are again going to have to distinguish between simple effects on between-subject factors and 

simple effects on within-subject factors. We will start with between-subject simple effects. We 

have three different between-subjects simple effects that we could examine—namely; the simple 

main effects of Condition and Sex at each Time, and the Sex × Condition simple interaction 



effect at each Time. For example, we might wish to check that the two Conditions (BST and EC) 

do not differ at pretest. Again, we might also want to test that they do differ at FU6 and/or at 

FU12. Here we are really dissecting the Condition × Time interaction effect, which we know 

from Table 14.7 to be significant.  

  

By far the easiest way to test these between-subjects effects is to run separate two-way 

(Condition × Sex) analyses at each level of the Time variable. These four analyses will give you 

all three simple effects at each Time with only minor effort. You can then accept the F values 

from these analyses, as I have done here for convenience, or you can pool the error terms from 

the four separate analyses and use that pooled error term in testing the mean square for the 

relevant effect. If these terms are heterogeneous, you would be wise not to pool them. On the 

other hand, if they represent homogeneous sources of variance, they may be pooled, giving you 

more degrees of freedom for error. For these effects you don’t need to worry about sphericity 

because each simple effect is calculated on only one level of the repeated-measures variable.  

  

The within-subjects simple effects are handled in much the same way. For example, there is 

some reason to look at the simple effects of Time for each Condition separately to see whether 

the EC condition shows changes over time in the absence of a complete intervention. Similarly, 

we would like to see how the BST condition changes with time. However, we want to include 

Sex as an effect in both of these analyses so as not to inflate the error term unnecessarily. We 

also want to use a separate error term for each analysis, rather than pooling these across 

Conditions.  

  



The relevant analyses are presented in Table 14.9 for simple effects at one level of the other 

variable. Tests at the other levels would be carried out in the same way. Although this table has 

more simple effects than we care about, they are presented to illustrate the way in which tests 

were constructed. You would probably be foolish to consider all of the tests that result from this 

approach, because you would seriously inflate the familywise error rate. Decide what you want 

to look at before you run the analyses, and then stick to that decision. If you really want to look 

at a large number of simple effects, consider adopting one of the Bonferroni approaches 

discussed in Chapter 12. 

  

Table 14.9  Analysis of simple effects 

(a) Between-subjects effects (Condition, Sex, and Condition ×××× Sex) at Pretest 

Source df SS MS F 
Condition 
Sex 
Condition × Sex 
Error 

1 
1 
1 
36 

403.225 
2544.025 
119.025 
10027.100 

403.225 
2544.025 
119.025 
278.530 

1.45 
9.13* 
0.43 

Total 39 13093.375     
  

(b) Within-subject effects (Sex, Time, Time ×××× Sex) at BST 

Source df SS MS F 
Between subjects 
     Sex 
     Error (between) 

19 
1 
18 

7849.13 
2173.61 
5675.52 

  
2173.61 
315.30 

  
6.89* 
  

Within subjects 
     Time 
     T × S 
     Error (within)  

60 
3 
3 
54 

3646.26 
338.94 
54.54 
3252.78 

  
112.98 
18.18 
60.24 

  
1.88 
0.30 

Total 79 11495.39     
*p < .05 

  



  

From the between-subjects analysis in Table14.9a we see that at Time 1 (Pretest) there was a 

significant difference between males and females (females show a lower frequency of use). But 

there were no Condition effects nor was there a Condition × Sex interaction. Males exceed 

females by just about the same amount in each Condition. The fact that there is no Condition 

effect is reassuring, because it would not be comforting to find that our two conditions differed 

before we had applied any treatment.  

  

From the results in Table 14.9b we see that for the BST condition there is again a significant 

difference due to Sex, but there is no Time effect, nor a Time × Sex interaction. This is 

discouraging: It tells us that when we average across Sex there is no change in frequency of 

condom use as a result of our intervention. This runs counter to the conclusion that we might 

have drawn from the overall analysis where we saw a significant Condition by Time interaction, 

and speaks to the value of examining simple effects. The fact that an effect we seek is significant 

does not necessarily mean that it is significant in the direction we desire. 

  

14.9.    TWO WITHIN-SUBJECTS VARIABLES AND ONE BETWEEN-

SUBJECTS VARIABLE 

  

The design we just considered can be seen as a straightforward extension of the case of one 

between- and one within-subjects variable. All that we needed to add to the summary table was 

another main effect and the corresponding interactions. However, when we examine a design 

with two within-subjects main effects, the problem becomes slightly more complicated because 



of the presence of additional error terms. To use a more generic notation, we will label the 

independent variables as A, B, and C.  

  

Suppose that as a variation on the previous study we continued to use different subjects for the 

two levels of variable A (Gender), but we ran each subject under all combinations of variables B 

 (Condition) and C (Trials). This design can be diagrammed as    

    
        

       

       

       
  

Before we consider an example, we will examine the expected mean squares for this design. 

These are presented in Table 14.10 for the case of the model in which all factors other than 

subjects are fixed. (subjects are treated as a random factor.) From the expected mean squares it is 

evident that we will have four error terms for this design. As before, the is used to 

test the between-subjects effect. When it comes to the within-subjects terms, however, B and the 

interaction of B with A are tested by B × Ss within groups; C and its interaction with A are tested 

by C × Ss within groups; and BC and its interaction with A are tested by BC × Ss within groups. 

Why this is necessary is apparent from the expected mean squares 

  

Table 14.10  Expected mean squares 

Source df E(MS) 
Between subjects 
     A (groups) 

     Ss w/in groups 

an – 1 
     a – 1 

     a(n – 1) 

  

 



Within subjects 
     B 

     AB 

     B × Ss w/in groups 

     C 

     AC 

     C × Ss w/in groups 

     BC 

     ABC 

     BC × Ss w/in groups 

na(bc – 1) 
     b – 1 

     (a – 1)(b – 1) 

     a(b – 1)(n – 1) 

     c – 1 

     (a – 1)(c – 1) 

     a(c – 1)(n – 1) 

     (b – 1)(c – 1) 

     (a – 1) (b – 1)(c – 1) 

     a(b – 1)(c – 1)(n – 1) 

  

 
Total N – 1    

  

  

An analysis of data on conditioned suppression 

  

Assume that a tiny “click” on your clock radio always slightly precedes your loud and intrusive 

alarm going off. Over time that click (psychologists would call it a “CS”) could come to elicit the 

responses normally produced by the alarm (the “US”). Moreover, it is possible that simply 

presenting the click might lead to the suppression of an ongoing behavior, even if that click is not 

accompanied by the alarm. (If you were lying there reading, you might pause in your reading.) In 

a laboratory investigation of how the click affects (suppresses) ongoing behavior, Bouton and 

Swartzentruber (1985) investigated the degree to which a tone, which had previously been paired 

with shock, would suppress the rate of an ongoing bar-pressing response in rats. Suppression was 

measured by taking the ratio of the number of bar presses during a 1-minute test period following 

the tone to the total number of bar presses during both a baseline period and the test period. For 

all groups, behavior was assessed in two Phases—a Shock phase (shock accompanied the tone) 



and a No-Shock phase (shock did not accompany the tone) repeated over a series of four Cycles 

of the experiment.  

  

It may be easier to understand the design of the study if you first glance at the layout of 

Table 14.11. During Phase I, Group A-B was placed in Box A. After a 1-minute baseline interval, 

during which the animal bar-pressed for food, a tone was presented for 1 minute and was 

followed by a mild shock. The degree of suppression of the bar-pressing response when the tone 

was present (a normal fear response) was recorded. The animal was then placed in Box B for 

Phase II of the cycle, where, after 1 minute of baseline bar-pressing, only the tone stimulus was 

presented. Since the tone was previously paired with shock, it should suppress bar-pressing 

behavior to some extent. Over a series of A-B cycles, however, the subject should learn that 

shock is never administered in Phase II and that Box B is therefore a “safe” box. Thus, for later 

cycles there should be less suppression on the no-shock trials.  

  

Group L-A-B was treated in the same way as Group A-B except that these animals previously had 

had experience with a situation in which a light, rather than a tone, had been paired with shock. 

Because of this previous experience, the authors expected the animals to perform slightly better 

(less suppression during Phase II) than did the other group, especially on the first cycle or two. 

  

Group A-A was also treated in the same way as Group A-B except that both Phases were carried 

out in the same box—Box A. Because there were no differences in the test boxes to serve as cues 

(i.e., animals had no way to distinguish the no-shock from the shock phases), this group would 

be expected to show the most suppression during the No-shock phases.  



  

Bouton and Swartzentruber predicted that overall there would be a main effect due to Phase (i.e., 

a difference between shock and no-shock Phases), a main effect due to Groups (A-B and L-A-B 

showing less suppression than A-A), and a main effect due to Cycles (animals tested in Box B 

would learn over time that it was a safe location). They also predicted that each of the 

interactions would be significant. (One reason I chose to use this example, even though it is 

difficult to describe concisely, is that it is one of those rare studies in which all effects are 

predicted to be significant and meaningful.)  

  

The data and analysis of variance for this study are presented in Table 14.11. The analysis has 

not been elaborated in detail because it mainly involves steps that you already know how to do. 

The results are presented graphically in Figure 14.4 for convenience, and for the most part they 

are clear-cut and in the predicted direction. Keep in mind that for these data a lower score 

represents more suppression—that is, the animals are responding more slowly. 



Table 14.11  Analysis of conditioned suppression (Lower scores represent greater suppression.) 

(a1) Data 

  Cycle   
  1 2 3 4   
  Phase Phase Phase Phase   
                  Subject 
Group I II I II I II I II Mean 
A-B 1*  28 22 48 22 50 14 48      

29.125 
  21  21 16 40 15 39 11 56      

27.375 
  15  17 13 35 22 45 1 43      

23.875 
  30  34 55 54 37 57 57 68      

49.000 
  11  23 12 33 10 50 8 53      

25.000 
  16  11 18 34 11 40 5 40      

21.875 
  7  26 29 40 25 50 14 56      

30.875 
  0  22 23 45 18 38 15 50      

26.375 
MeanAB 12.625 22.750 23.500 41.125 20.000 46.125 15.625 51.750      

29.188 
                    
A-A 1 6 16 8 9 14 11 33      

12.250 
  37 59 28 36 34 32 26 37      

36.125 
  18 43 38 50 39 15 29 18      

31.250 
  1 2 9 8 6 5 5 15        

6.375 
  44 25 28 42 47 46 33 35      

37.500 
  15 14 22 32 16 23 32 26      

22.500 
  0 3 7 17 6 9 10 15        

8.375 
  26 15 31 32 28 22 16 15      

23.125 
MeanAA 17.750 20.875 22.375 28.125 23.125 20.750 20.250 24.250      

22.188 
                    
L-A-B 33  43 40 52 39 52 38 48      

43.125 
  4  35 9 42 4 46 23 51      

26.750 
  32  39 38 47 24 44 16 40      

35.000 
  17  34 21 41 27 50 13 40      

30.375 
  44  52 37 48 33 53 33 43      



42.875 
  12  16 9 39 9 59 13 45      

25.250 
  18  42 3 62 45 49 60 57      

42.000 
  13  29 14 44 9 50 15 48      

27.750 
MeanLAB 21.625  36.250 21.375 46.875 23.750 50.375 26.375 46.500      

34.141 
                    
Total 17.333 26.625 22.417 38.708 22.292 39.083 20.750 40.833      

28.505 
  
*Decimal points have been omitted in the table, but included in the calculations. 
           
  

Rather than present literally three pages of tables and calculations, which few people would have 

the patience to work through, I have chosen to carry out the analysis using SPSS[6]. The data 

would be entered just as they appear in Table 14.11, with a column for Groups on the left. You 

would select Analyze, General Linear Model, Repeated Measures from the drop-down menus and 

specify that there were two repeated measures (Cycles with 4 levels and Phases with 2 levels). 

Then click on Define and specify the variables that are associated with each of the cells and the 

variable(s) that define the Between-Subject Factor(s). This dialogue box follows, where C1P1 – 

C4P2 would be moved to the Within-Subject Variables box and Group would be moved to the 

Between-Subjects Factor(s) box.  



       

From the bottom row of that dialogue box you can specify what plots you would like to see, what 

contrasts you would like to run, and any descriptive statistics you want printed out. Then click on 

OK to run the analysis. 

  

An abbreviated summary table appears below. I have omitted entries in the table related to 

Greenhouse and Geisser and related corrections to condense the table. Notice that SPSS presents 

separate tables for Within-Subject factors and Between-Subject factors, though I would prefer to 

have them combined into one table with appropriate indentations. 

  

Table 14.12  SPSS output of the analysis of conditioned suppression data 



 

 
  
  

Notice that there are multiple error terms in the table. The Group effect is tested by the Error 

term in the Between-Subjects table. Then Cycle and Cycle x Group are tested by Error(Cycle), 

Phase and Phase x Group are tested by Error(Phase), and Cycle x Phase and Cycle x Phase x 

Group are tested by Error(Cycle x Phase). 

  

  

  



 

Figure 14.4 Conditioned suppression data 

  

From the summary table in Table 14.12, it is clear that nearly all the predictions were supported. 

The only effect that was not significant was the main effect of Groups, but that effect is not 

crucial because it represents an average across the shock and the no-shock phases, and the 

experimenters had predicted little or no group differences in the shock phase. In this context, the 

Phase × Group interaction is of more interest, and it is clearly significant. 

  

The presence of an interpretable three-way interaction offers the opportunity to give another 

example of the use of simple interaction effects. We would have predicted that all groups would 

show high levels of suppression of the shock trials on all Cycles, because anticipated shock is 

clearly disruptive. On no-shock trials, however, Groups A-B and L-A-B should show less 

suppression (higher scores) than Group A-A, and this latter difference should increase with 

Cycles. In other words, there should be a Groups × Cycles interaction for the no-shock trials, but 

no such interaction for the shock trials. The simple effects are shown in Table 14.13. (In these 



tables Ihave left in the corrections based on Greenhouse-Geisser, Huhyn-Feldt, and Lower-

Bound solutions to illustrate how they are presented by SPSS. Whether or not we choose to 

implement the corrections does not affect the conclusions. The calculation of the appropriate 

tests was carried out the same way it was earlier, by running a reduced analysis of variance using 

only the Phase 1 (or Phase 2) cells. Here again we are using separate error terms to test the Shock 

and No-shock effects, thus reducing problems with the sphericity assumption. (Again, just 

because the analyses also give simple effects due to Groups and Cycles is no reason to feel an 

obligation to interpret them. If they don’t speak to issues raised by the experimental hypotheses, 

they should neither be reported nor interpreted unless you take steps to minimize the increase in 

the experimentwise error rate.)  

  

Table 14.13  Simple interaction effects on conditioned suppression data 

(a) Within-subject effects (Group ×××× Cycle at Phase I) 

 



 
  
  
 (b) Within-subject effects (Group ×××× Cycle at Phase II) 

 

 
  
  



From the simple interaction effects of Group × Cycle at each level of Phase, you can see that 

Bouton and Swartzentruber’s predictions were upheld. There is no Cycle × Group interaction on 

Shock trials, but there is a clear interaction on No-shock trials. 

  

14.10.             INTRACLASS CORRELATION 

  

One of the important issues in designing experiments in any field is the question of the reliability 

of the measurements. Most of you would probably expect that the last place to look for anything 

about reliability is in a discussion of the analysis of variance, but that is exactly where you will 

find it. (For additional material on the intraclass correlation, go to 

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/icc/icc.html)  

  

Suppose that we are interested in measuring the reliability with which judges rate the degree of 

prosocial behavior in young children. We might investigate this reliability by having two or more 

judges each rate a behavior sample of a number of children, assigning a number from 1 to 10 to 

reflect the amount of prosocial behavior in each behavior sample. I will demonstrate the 

procedure with some extreme data that were created to make a point. Look at the data in 

Table 14.18. 

  



Table 14.18   

  (a) 
Judge 

(b) 
Judge 

(c)  
Judge 

Child I II III I II III I II III 
1 
2 
3 
4 
5 

1 
3 
5 
5 
7 

1 
3 
5 
6 
7 

2 
3 
5 
6 
7 

1 
3 
5 
5 
7 

0 
2 
4 
4 
6 

3 
5 
7 
7 
8 

1 
3 
5 
5 
7 

3 
1 
7 
5 
6 

7 
5 
4 
5 
7 

  

In Table 14.18a the judges are in almost perfect agreement. They all see wide differences 

between children, they all agree on which children show high levels of prosocial behavior and 

which show low levels, and they are nearly in agreement on how high or low those levels are. In 

this case nearly all of the variability in the data involves differences among children—there is 

almost no variability among judges and almost no random error.  

  

In Table 14.18b we see much the same pattern, but with a difference. The judges do see overall 

differences among the children, and they do agree on which children show the highest (and 

lowest) levels of the behavior. But the judges disagree in terms of the amount of prosocial 

behavior they see. Judge II sees slightly less behavior than Judge I (his mean is 1 point lower), 

and Judge III sees relatively more behavior than do the others. In other words, while the judges 

agree on ordering children, they disagree on level. Here the data involve both variability among 

children and variability among judges. However, the random error component is still very small. 

This is often the most realistic model of how people rate behavior because each of us has a 

different understanding of how much behavior is required to earn a rating of “7,” for example. 

Our assessment of the reliability of a rating system must normally take variability among judges 

into account.  



  

Finally, Table 14.18c shows a pattern where not only do the judges disagree in level, they also 

disagree in ordering children. A large percentage of the variability in these data is error variance.  

  

So what do we do when we want to talk about reliability? One way to measure reliability when 

judges use only a few levels or categories is to calculate the percentage of times that two judges 

agree on their rating, but this measure is biased because of high levels of chance agreement 

whenever one or two categories predominate. (But see the discussion earlier of Cohen’s kappa.) 

Another common approach is to correlate the ratings of two judges, and perhaps average 

pairwise correlations if you have multiple judges. But this approach will not take differences 

between judges into account. (If one judge always rates five points higher than another judge the 

correlation will be 1.00, but the judges are saying different things about the subjects.) A third 

way is to calculate what is called the intraclass correlation, taking differences due to judges 

into account. That is what we will do here.  

  

You can calculate an intraclass correlation coefficient in a number of different ways, depending 

on whether you treat judges as a fixed or random variable and whether judges evaluate the same 

or different subjects. The classic reference for intraclass correlation is Shrout and Fleiss (1979), 

who discuss several alternative approaches. I am going to discuss only the most common 

approach here, one in which we consider our judges to be a random sample of all judges we 

could have used and in which each judge rates the same set of subjects once. (In what follows I 

am assuming that judges are rating “subjects,” but they could be rating pictures, cars, or the 

livability of cities. Take the word “subject” as a generic term for whatever is being rated.)  



  

We will start by assuming that the data in Table 14.18 can be represented by the following 

model: 

 

In this model  stands for the effect of the ith judge,  stands for the effect of the jth subject 

(person),  is the interaction between the ith judge and the jth subject (the degree to which the 

judge changes his or her rating system when confronted with that subject), and  stands for the 

error associated with that specific rating.  Because each judge rates each subject only once, it is 

not possible in this model to estimate  and  separately, but it is necessary to keep them 

separate in the model.  

  

If you look back to the previous chapter you will see that when we calculated a magnitude-of-

effect measure (which was essentially an r2-family measure), we took the variance estimate for 

the effect in question (in this case differences among subjects) relative to the sum of the 

estimates of the several sources of variance. That is precisely what we are going to do here. We 

will let  

 

  

If most of the variability in the data is due to differences between subjects, with only a small 

amount due to differences between judges, the interaction of judges and subjects, and error, then 

this ratio will be close to 1.00. If judges differ from one another in how high or low they rate 

people in general, or if there is a judge by subject interaction (different judges rate different 



people differently), or if there is a lot of error in the ratings, the denominator will be substantially 

larger than the numerator and the ratio will be much less than 1.00.  

  

To compute the intraclass correlation we are first going to run a Subjects × Judges analysis of 

variance with Judges as a repeated measure. Because each judge rates each subject only once, 

there will not be an independent estimate of error, and we will have to use the Judge × Subject 

interaction as the error term. From the summary table that results, we will compute our estimate 

of the intraclass correlation as 

 

where j represents the number of judges and n represents the number of subjects.  

  

To illustrate this, I have run the analysis of variance on the data in Table14.18b, which is the data 

set where I have deliberately built in some differences due to subjects and judges. The summary 

table for this analysis follows.  

  

Source df SS MS F 
Between subjects 4 57.067 14.267   
Within subjects 10 20.666 2.067   
  Judge 2 20.133 10.067 150.25 
  Judge × Subjects 8 0.533 0.067   

Total 14 77.733      
  

We can now calculate the intraclass correlation as 

 



Thus our measure of reliability is .70, which is probably not as good as we would like to see it. 

But we can tell from the calculation that the main thing that contributed to low reliability was not 

error, but differences among judges. This would suggest that we need to have our judges work 

together to decide on a consistent scale where a “7” means the same thing to each judge. 

  

14.11.            OTHER CONSIDERATIONS 

  

Sequence effects 

  

Repeated-measures designs are notoriously susceptible to sequence effects and carryover 

(practice) effects. Whenever the possibility exists that exposure to one treatment will influence 

the effect of another treatment, the experimenter should consider very seriously before deciding 

to use a repeated-measures design. In certain studies, carryover effects are desirable. In learning 

studies, for example, the basic data represent what is carried over from one trial to another. In 

most situations, however, carryover effects (and especially differential carryover effects) are 

considered a nuisance—something to be avoided.  

  

The statistical theory of repeated-measures designs assumes that the order of administration is 

randomized separately for each subject, unless, of course, the repeated measure is something like 

trials, where it is impossible to have trial 2 before trial 1. In some situations, however, it makes 

more sense to assign testing sequences by means of a Latin square or some other device. 

Although this violates the assumption of randomization, in some situations the gains outweigh 

the losses. What is important, however, is that random assignment, Latin squares, and so on do 



not in themselves eliminate sequence effects. Ignoring analyses in which the data are analyzed 

by means of a Latin square or a related statistical procedure, any system of assignment simply 

distributes sequence and carryover effects across the cells of the design, with luck lumping them 

into the error term(s). The phrase “with luck” implies that if this does not happen, the carryover 

effects will be confounded with treatment effects and the results will be very difficult, if not 

impossible, to interpret. For those students particularly interested in examining sequence effects, 

Winer (1971), Kirk (1968), and Cochran and Cox (1957) present excellent discussions of Latin 

square and related designs. 

  

Unequal group sizes 

  

One of the pleasant features of repeated-measures designs is that when a subject fails to arrive 

for an experiment, it often means that that subject is missing from every cell in which he was to 

serve. This has the effect of keeping the cell sizes proportional, even if unequal. If you are so 

unlucky as to have a subject for whom you have partial data, the common procedure is to 

eliminate that subject from the analysis. If, however, only one or two scores are missing, it is 

possible to replace them with estimates, and in many cases this is a satisfactory approach. For a 

discussion of this topic, see Federer (1955, pp. 125–126, 133ff), and especially Little and Rubin 

(1987), and Howell (2008) and the discussion in Section 14.12. 

  



Matched samples and related problems 

  

In discussing repeated-measures designs, we have spoken in terms of repeated measurements on 

the same subject. Although this represents the most common instance of the use of these designs, 

it is not the only one. The specific fact that a subject is tested several times really has nothing to 

do with the matter. Technically, what distinguishes repeated-measures designs (or, more 

generally, randomized blocks designs, of which repeated-measures designs are a special case) 

from the common factorial designs with equal ns is the fact that for repeated-measures designs, 

the off-diagonal elements of ∑ do not have an expectation of zero—that is, the treatments are 

correlated. Repeated use of the same subject leads to such correlations, but so does use of 

matched samples of subjects. Thus, for example, if we formed 10 sets of three subjects each, 

with the subjects matched on driving experience, and then set up an experiment in which the first 

subject under each treatment came from the same matched triad, we would have correlations 

among treatments and would thus have a repeated-measures design. Any other data-collection 

procedure leading to nonzero correlations (or covariances) could also be treated as a repeated-

measures design. 

  
  
  
  

14.12.             MIXED MODELS FOR REPEATED-MEASURES DESIGNS 

  

Earlier in the chapter I said that the standard repeated-measures analysis of variance requires an 

assumption about the variance–covariance matrix known as sphericity, a specific form of which 

is known as compound symmetry. When we discussed and , we were concerned with 



correction factors that we could apply to the degrees of freedom to circumvent some of the 

problems associated with a failure of the sphericity assumption. 

  

There is a considerable literature on repeated-measures analyses and their robustness in the face 

of violations of the underlying assumptions. Although there is not universal agreement that the 

adjustments proposed by Greenhouse and Geisser and by Huynh and Feldt are successful, the 

adjustments work reasonably well as long as we focus on overall main or interaction effects, or 

as long as we use only data that relate to specific simple effects (rather than using overall error 

terms). Where we encounter serious trouble is when we try to run individual contrasts or simple 

effects analyses using pooled error terms. Boik (1981) has shown that in these cases the 

repeated-measures analysis is remarkably sensitive to violations of the sphericity assumption 

unless we adopt separate error terms for each contrast, as I did for the simple effects tests in 

Table 14.13. However there is another way of dealing with assumptions about the covariance 

matrix, and that is to not make such assumptions. But to do that we need to take a different 

approach to the analysis itself. 

  

Standard repeated measures analysis of variance has two problems that we have lived with for 

many years and will probably continue to live with. It assumes both compound symmetry (or 

sphericity) and complete data. If a participant does not appear for a follow-up session, even if he 

appears for all of the others, he must be eliminated from the analysis. There is an alternative 

approach to the analysis of repeated measures designs that does not hinge on either sphericity 

assumptions or complete data. This analysis is often referred to as mixed models, multilevel 

modeling, or hierarchical modeling. There is a bit of confusion here because we have already 



used the phrase “mixed models” to refer to any experimental design that involves both fixed and 

random factors. That is a perfectly legitimate usage. But when we are speaking of a method of 

analysis, such as we are here, the phrase “mixed models” refers more to a particular type of 

solution, involving both fixed and random factors, using a different approach to the arithmetic. 

More specifically, when someone claims to have done their analysis using  mixed models, they 

are referring to a solution that employs maximum likelihood or, more likely, restricted 

maximum likelihood (REML) in place of the least squares approaches that we have focused on 

up to now and will focus on again in the next two chapters[7]. 

  

This section covers a small part of the broader topic of hierarchical or multilevel models. For 

these models the repeated measure (e.g. Time or Trials) is a fixed factor while Subjects is a 

random factor. The between-subjects factor is also usually a fixed factor. By approaching the 

problem using restricted maximum likelihood (REML) as the method of parameter estimation, 

the solution can take cognizance from the very beginning of the analysis that one or more factors 

are fixed and one or more factors are random. Least squares solutions of standard analysis of 

variance treats all factors as fixed until it comes to determining error terms for F statistics. 

  

No one would seriously attempt to do employ a mixed model analysis by hand. You must use 

computer software to perform the analysis. However there are many software programs 

available, some of them even free. The ones that you will have most access to are probably SPSS 

Mixed and SAS Proc Mixed. I will use SPSS for our example, though SAS proc mixed is 

probably more flexible. A more complete discussion of the analysis of alternative designs can be 

found at http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_Data/Mixed Models for 



Repeated Measures.pdf  For an example I have chosen a design with one between subject 

variable and one within subject variable. The example has missing data because that will 

illustrate an analysis that you can not do with standard analysis of variance. 

  

The Data 
  
I created data to have a number of characteristics. There are two groups – a Control 

group and a Treatment group, measured at 4 times. These times are labeled as 0 (pretest), 

1 (one month posttest), 3 (three months follow-up), and 6 (six months follow-up). I had a study 

of treatment of depression in mind, so I created the treatment group to show a sharp drop in 

depression at post-test and then sustain that drop (with slight regression) at 3 and 6 months. The 

Control group declines slowly over the 4 intervals but does not reach the low level of the 

Treatment group.  

  

The data are shown in Table 14.19. A period is used to indicate missing values. 

  

Table 14.19 Data for mixed model analysis. 

 
Group     Subj    Time0    Time1    Time3  Time6 
1              1              296          175          187          242 
1              2              376          329          236          126 
1              3              309          238          150          173 
1              4              222          60             82          135 
1              5              150          .               250          266 
1              6              316          291          238          194 
1              7              321          364          270          358 
1              8              447          402          .               266 
1              9              220            70          95            137 
1              10            375          335          334          129 
1              11            310          300          253          . 
1              12            310          245          200          170 
 
 



Group     Subj    Time0    Time1    Time3  Time6 
2              13            282          186          225          134 
2              14            317            31            85          120 
2              15            362          104          .               . 
2              16            338          132            91            77 
2              17            263            94          141          142 
2              18            138            38            16          95 
2              19            329          .                .                 6 
2              20            292          139          104          . 
2              21            275            94          135          137 
2              22            150          48             20            85 
2              23            319          68             67            . 
2              24            300          138          114          174 
 
 
One difference between data files for mixed models and others is that we use what is often called 

a “long form.” Instead of putting each subject’s data on one line, we have a separate line for 

every value of the dependent variance. Thus our data file will be structured like the one in Table 

14.20 

  

Table 14.20 Data restructured into a long form. 

Subj     Time     Group  dv 

1               0          1      296 
1               1          1      175 
1               3          1      187 
1               6          1      242 
… …      …        … 
24             3          2      114 
24             6          2      174 

  

Instead of showing you how to use the graphical interface in SPSS, which would take quite a bit 

of space, I am simply giving you the syntax for the commands[8]. After you have entered your 

data, open a new Syntax window, paste in the following commands, and select Run from the 

toolbar. I have left out a number of commands that do fine tuning, but what I have will run your 

analysis nicely. 

MIXED 



  dv  BY Group Time 
  /FIXED = Group Time Group*Time  | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = DESCRIPTIVES SOLUTION 
  /REPEATED = Time | SUBJECT(Subj) COVTYPE(CS) 
  /EMMEANS = TABLES(Group) 
  /EMMEANS = TABLES(Time) 
  /EMMEANS = TABLES(Group*Time)  . 

  

I am only presenting the most important parts of the printout, but you can see the rest by running 

the analysis yourself. (The data are available on the book’s website as WickMiss.dat.) 

 
  

Fixed Effects 

 
  
  

Covariance Parameters 



 
  

I will not discuss the section labeled “Information criteria” here, but will come back to it when 

we compare the fit of different models. The fixed effects part of the table looks just like one that 

you would see in most analyses of variance except that it does not include sums of squares and 

mean squares. That is because of the way that maximum likelihood solutions go about solving 

the problem. In some software it is possible to force them into the printout. Notice the test on the 

Intercept. That is simply a test that the grand mean is 0, and is of no interest to us. The other 

three effects are all significant. We don’t really care very much about the two main effects. The 

groups started off equal on pre-test, and those null differences would influence any overall main 

effect of groups. Similarly, we don’t care a great deal about the Time effect because we expect 

different behavior from the two groups. What we do care about, however, is the interaction. This 

tells us that the two groups perform differently over Time, which is what we hoped to see. You 

can see this effect in Figure 14.5. 

  



 
Figure 14.5  Means across trials for the two conditions. 
  
  
There are two additional results in the printout that need to be considered. The section headed 

“Covariance Parameters” is the random part of the model. The term labeled “CS diagonal  

offset” represents the residual variance and, with balanced designs, would be the error term for 

the within-subject tests. The term labeled “CS covariance” is the variance of the intercepts, 

meaning that if you plot the dependent variable against time for each subject, the differences in 

intercepts of those lines would represent differences due to subjects (some lines are higher than 

others) and it is this variance that we have here. For most of us that variance is not particularly 

important, but there are studies in which it is. 

  

As I said earlier, mixed model analyses do not require an assumption of compound symmetry. In 

fact, that assumption is often incorrect. In Table 14.21 you can see the pattern of correlations 

among trials. These are averaged over the separate groups, but give you a clear picture that the 

structure is not one of compound symmetry. 

  



Table 14.21  Correlations among trials 

Estimated R Correlation Matrix for Subject 1 
                       Row        Col1        Col2        Col3        Col4 
                         1      1.0000      0.5121      0.4163    -0.08840 
                         2      0.5121      1.0000      0.8510      0.3628 
                         3      0.4163      0.8510      1.0000      0.3827 
                         4    -0.08840      0.3628      0.3827      1.0000 

  

There are a number of things that we could do to alter the model that we just ran, which 

requested a solution based on compound symmetry. We could tell SPSS to solve the problem 

without assuming anything about the correlations or covariances. (That is essentially what the 

MANOVA approach to repeated measures does.) The problem with this approach is that the 

solution has to derive estimates of those correlations and that will take away degrees of freedom, 

perhaps needlessly. There is no point in declaring that you are totally ignorant when you are 

really only partially ignorant. Another approach would be to assume a specific (but different) 

form of the covariance matrix. For example, we could use what is called an autoregressive 

solution. Such a solution assumes that correlations between observations decrease as the times 

move further apart in time. It further assume that each correlation depends only on the preceding 

correlation plus some (perhaps much) error. If  the correlation between adjacent trials is, for 

example 0.5121 (as it is in the study we are discussing), then times that are two steps apart are 

assumed to correlate .51212 and times three steps apart are assumed to correlate .51213. This 

leads to a matrix of correlations that decrease regularly the more removed the observations are 

from each other. That sounds like a logical expectation for what we would find when we 

measure depression over time. For now we are going to consider the autoregressive covariance 

structure. 

  



Having decided on a correlational (or covariance) structure we simply need to tell SPSS to use 

that structure and solve the problem as before. The only change we will make is to the repeated 

command, where we will replace covtype(cs) with covtype(AR1). 

MIXED 
  dv  BY Group Time 
  /FIXED = Group Time Group*Time  | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = DESCRIPTIVES SOLUTION 
  /REPEATED = Time | SUBJECT(Subj) COVTYPE(AR1) 
  /EMMEANS = TABLES(Group) 
  /EMMEANS = TABLES(Time) 
  /EMMEANS = TABLES(Group*Time)  . 
  

 
  

  
  
Fixed Effects 

 
  
  
  



Covariance Parameters 

  

 
  
  
  

Here we see that all effects are still significant, which is encouraging. But which of these two 

models (one assuming a compound symmetry structure to the covariance matrix and the other 

assuming a first order autoregressive structure) is the better choice. We are going to come to the 

same conclusion with either model in this case, but that is often not true, and we still want to 

know which model is better. One way of doing that is to compare the sections labeled 

“Information Criteria” for each analysis. These are reproduced below for the two models. 

      Compound Symmetry Autoregressive (1) 

  
  
  

  



A good way to compare models is to compare either the Akaike’s Information Criterion (AIC) or 

the Bayesian Information Criterion (BIC). In general a model with a smaller value is better. For 

our examples the two AIC criteria are 909.398 and 899.066. It would appear that the 

Autoregressive (1) model is to be preferred, which is in line with what our eyes told us about the 

covariance structures. (If we had rerun the analysis using an unstructured covariance matrix 

(COVTYPE(UN)), AIC would be 903.691 and BIC would be 927.385, so we would still choose 

the autoregressive model.) 

  

Mixed models have a great deal to offer in terms of fitting data to models and allow us to 

compare underlying models to best interpret our data. They also can be very valuable in the 

absence of missing data. However they are more difficult to work with and the software, while 

certainly improving, is far from intuitive in some cases. However I think that this is the direction 

that more and more analyses will take over the next decade and it is important to understand 

them.  

  

Papers by Overall, Tonidandel, and others that illustrate the problems with mixed models. The 

major problem is the fact that it is very difficult to know how to correctly specify your model, 

and different specifications can lead to different results and sometimes rather low power. An 

excellent paper in this regard is by Overall and Shivakumar (1997) and another by Overall and 

Tonidandel (2007). I recommend that you look at those papers when considering the use of 

mixed models, although those authors used SAS Proc Mixed for their analyses and it is not 

entirely clear how those models relate to models you would have using SPSS. What seems to be 



critically important is the case where missing data depend on the participant’s initial response at 

baseline and attempts to use this measure as a covariate.. 

  

Key Terms 

 
Partition (Introduction) 

Partialling out (Introduction) 

Repeated-measures designs (Introduction) 

 ( ) (Introduction) 

 (Introduction) 

Main diagonal (14.3) 

Off-diagonal elements (14.3) 

Compound symmetry (14.3) 

Covariance matrix (∑) (14.3) 

Sphericity (14.3) 

Multivariate analysis of variance (MANOVA) (14.3) 

Multivariate procedure (14.3) 

 (14.7) 

 (14.7) 

Intraclass correlation (14.11) 

Sequence effects (14.12) 

Carryover effects (14.12) 

Latin square (14.12) 



Randomized blocks designs (14.12) 

Matched samples (14.12) 

Univariate (14.14)  

 
  

  

EXERCISES 

14.1)        It is at least part of the folklore that repeated experience with any standardized test 

leads to better scores, even without any intervening study. We obtain eight subjects and give 

them a standardized admissions exam every Saturday morning for 3 weeks. The data follow:  

S First Second Third 
1 550 570 580 
2 440 440 470 
3 610 630 610 
4 650 670 670 
5 400 460 450 
6 700 680 710 
7 490 510 510 
8 580 550 590 
        

a)      Write the statistical model for these data. 

b)      Run the analysis of variance. 

c)      What, if anything, would you conclude about practice effects on the GRE?  

14.2)        Using the data from Exercise 14.1, 

a)      delete the data for the third session and run a (matched-sample) t test between 

Sessions 1 and 2.  

b)      Now run a repeated-measures analysis of variance on the two columns you used in 

part (a) and compare this F with the preceding t.  



14.3)        To demonstrate the practical uses of basic learning principles, a psychologist with an 

interest in behavior modification collected data on a study designed to teach self-care skills to 

severely developmentally handicapped children. An experimental group received reinforcement 

for activities related to self-care. A second group received an equivalent amount of attention, but 

no reinforcement. The children were scored (blind) by a rater on a 10-point scale of self-

sufficiency. The ratings were done in a baseline session and at the end of training. The data 

follow:  

Reinforcement No Reinforcement 
Baseline Training Baseline Training 
8 9 3 5 
5 7 5 5 
3 2 8 10 
5 7 2 5 
2 9 5 3 
6 7 6 10 
5 8 6 9 
6 5 4 5 
4 7 3 7 
4 9 5 5 
        

Run the appropriate analysis and state your conclusions. 

14.4)        An experimenter with only a modicum of statistical training took the data in 

Exercise 14.3 and ran an independent-groups t test instead, using the difference scores (training 

minus baseline) as the raw data. 

a)      Run that analysis. 

b)      Square the value of t and compare it to the Fs you obtained in Exercise 14.3. 

c)      Explain why is not equal to F for Groups.  

14.5)        To understand just what happened in the experiment involving the training of 

severely developmentally handicapped children (Exercise 14.3), our original experimenter 

evaluated a third group at the same times as he did the first two groups, but otherwise provided 



no special treatment. In other words, these children did not receive reinforcement, or even the 

extra attention that the control group did. Their data follow: 

Baseline: 3 5 8 5 5 6 6 6 3 4 
Training: 4 5 6 6 4 7 7 3 2 2  
                      

a)      Add these data to those in Exercise 14.3 and rerun the analysis. 

b)      Plot the results. 

c)      What can you conclude from the results you obtained in parts (a) and (b)?  

d)      Within the context of this three group experiment, run the contrast of the two 

conditions that you have imported from Exercise 14.3. 

e)  Compute the effect size for the contrast in part d). 

14.6)        For 2 years I carried on a running argument with my daughter concerning hand 

calculators. She wanted one. I maintained that children who use calculators never learn to do 

arithmetic correctly, whereas she maintained that they do. To settle the argument, we selected 

five of her classmates who had calculators and five who did not, and made a totally unwarranted 

assumption that the presence or absence of calculators was all that distinguished these children. 

We then gave each child three 10-point tests (addition, subtracton, and multiplication), which 

they were required to do in a very short time in their heads. The scores are as follows:  

  Addition Subtraction Multiplication 
Calculator owners 8 5 3 
  7 5 2  
  9 7 3  
  6 3 1  
  8 5 1 
Non-calculator owners 10 7 6  
  7 6 5  
  6 5 5  
  9 7 8  
  9 6 9  
        

a)      Run the analysis of variance. 



b)      Do the data suggest that I should have given in and bought my daughter a calculator? 

(I did anyway. She is now in her late 30s and is a fully certified actuary—so what do I know?)  

14.7)        For the data in Exercise 14.6, 

a)      calculate the variance–covariance matrices. 

b)      calculate using your answers to part (a).  

14.8)        From the results in Exercise 14.7, do we appear to have reason to believe that we 

have met the assumptions required for the analysis of repeated measures? 

14.9)        For the data in Exercise 14.6, 

a)      calculate all possible simple effects after first plotting the results. 

b)      test the simple effects, calculating test terms and adjusted degrees of freedom where 

necessary.  

14.10)    In a study of the way children and adults summarize stories, we selected 10 fifth 

graders and 10 adults. These were further subdivided into equal groups of good and poor readers 

(on the hypothesis that good and poor readers may store or retrieve story information 

differently). All subjects read 10 short stories and were asked to summarize the story in their 

own words immediately after reading it. All summaries were content analyzed, and the numbers 

of statements related to Settings, Goals, and inferred Dispositions were recorded. The data are 

collapsed across the 10 stories:  

Age Adults Children 
Items  Setting Goal Disp. Setting Goal Disp. 

Good readers 8 7 6 5 5 2  
  5 6 4 7 8 4 
  5 5 5 7 7 4 
  7 8 6 6 4 3 
  6 4 4 4 4 2  
Poor readers 7 6 3 2 2 2 
  5 3 1 2 0 1  
  6 6 2 5 4 1  



  4 4 1 4 4 2  
  5 5 3 2 2 0  
              

  

Run the appropriate analysis. 

14.11)    Refer to Exercise 14.10. 

a)      Calculate the simple effect of reading ability for children. 

b)      Calculate the simple effect of items for adult good readers.  

14.12)    Calculate the within-groups covariance matrices for the data in Exercise 14.10. 

14.13)    Suppose we had instructed our subjects to limit their summaries to 10 words. What 

effect might that have on the data in Exercise 14.10? 

14.14)    In an investigation of cigarette smoking, an experimenter decided to compare three 

different procedures for quitting smoking (tapering off, immediate stopping, and aversion 

therapy). She took five subjects in each group and asked them to rate (on a 10-point scale) their 

desire to smoke “right now” in two different environments (home versus work) both before and 

after quitting. Thus, we have one between-subjects variable (Treatment group) and two within-

subjects variables (Environment and Pre/Post).  

  Pre Post 
  Home Work Home Work 

Taper 7 6 6 4  
  5 4 5 2  
  8 7 7 4  
  8 8 6 5  
  6 5 5 3  
          
Immediate 8 7 7 6  
  5 5 5 4  
  7 6 6 5  
  8 7 6 5  
  7 6 5 4  
          
Aversion 9 8 5 4  



  4 4 3 2  
  7 7 5 3  
  7 5 5 0  
  8 7 6 3  

  
a)      Run the appropriate analysis of variance. 

b)      Interpret the results.  

14.15)    Plot the results you obtained in Exercise 14.14. 

14.16)    Run simple effects on the data in Exercise 14.14 to clarify the results. 

14.17)    The abbreviated printout in Exhibit 14.3 represents the analysis of the data in 

Exercise 14.5. 

a)      Compare this printout with the results you obtained in Exercise 14.5. 

b)      What does a significant F for “MEAN” tell us? 

c)      Relate  to the table of cell standard deviations.  

Exhibit 14.3 

BMDP2V - ANALYSIS OF VARIANCE AND COVARIANCES  
  
WITH REPEATED MEASURES. 

  
PROGRAM CONTROL INFORMATION 

/PROBLEM          TITLE IS 'BMDP2V ANALYSIS OF EXERCISE 14.5'. 
/INPUT                 VARIABLES ARE 3. 
                              FORMAT IS '(3F2.0)'. 

                             CASES ARE 30. 
/VARIABLE        NAMES ARE GROUP,  PRE,  POST. 
/DESIGN              DEPENDENT ARE 2, 3. 

                              LEVELS ARE 2. 
                              NAME IS TIME. 
                              GROUP = 1. 

/END 
  
                    CELL MEANS FOR 1-ST DEPENDENT  VARIABLE 

                                                                                                                                      MARGINAL 
                GROUP      =      * 1.0000               * 2.0000                    *3.0000 
                               TIME 
PRE                            1        4.80000               4.70000                   5.10000                4.86667 



POST                         2         7.00000              6.40000                   4.60000                6.00000 
    
         MARGINAL               5.90000              5.55000                     4.85000               5.43333 
         COUNT                          10                10                                10                      30 
  
                    STANDARD DEVIATIONS FOR 1-ST DEPENDENT VARIABLE 

  
            GROUP         =      * 1.0000                * 2.000              * 3.0000 
                              TIME 

PRE                           1        1.68655 1.76698    1.52388 
POST                        2         2.16025               2.45855                   1.89737 
  

                        SUM OF                    DEGREES OF        MEAN                                    TAIL 

SOURCE       SQUARES          FREEDOM      SQUARE                F               PROBABILITY 
MEAN           1771.26667                    1                 1771.26667 322.48             0.0000 
GROUP             11.43333                    2                         5.71667                           1.04        0.3669 

          1  ERROR            148.30000                  27                       5.49259 
  
TIME                 19.26667                    1                       19.26667                           9.44        0.0048 

TG                     20.63333                    2                      10.31667 5.06                  0.0137 
         2  ERROR              55.10000                  27         2.04074 
  

14.18)    The SPSS printout in Exhibit 14.4 was obtained by treating the data in Exercise 14.10 

as though all variables were between-subjects variables (i.e., as though the data represented a 

standard three-way factorial). Show that the error terms for the correct analysis represent a 

partition of the error term for the factorial analysis. 

Exhibit 14.4 



 
  

  

14.19)    Outline the summary table for an A × B × C × D design with repeated measures on A 

and B and independent measures on C and D.  

14.20)    Foa, Rothbaum, Riggs, and Murdock (1991) ran a study comparing different 

treatments for posttraumatic stress disorder (PTSD). They used three groups (plus a waiting list 

control) One group received Stress Inoculation Therapy (SIT), another received a Prolonged 

Exposure (PE) treatment, and a third received standard Supportive Counseling (SC). All clients 

were measured at Pretreatment, Posttreatment, and a 3.5 month Follow-up. The data below 

closely approximate the data that they collected, and the dependent variable is a measure of 

PTSD. 

SIT PE SC 
Pre Post Followup Pre Post Followup Pre Post Followup 

19 
28 
18 

  6 
14 
  6 

     1 
   16 
    8 

20 
21 
36 
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18 
26 

    0  
   21 
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12 
27 
24 

14 
18 
19 

   18 
     9 
   13 



23 
21 
24 
26 
15 
18 
34 
20 
34 
29 
33 
22 
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  6 
10 
10 
  6 
  8 
13 
10 
10 
16 
19 
  7 

   11 
   13 
     8 
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   13 
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     8 
   16 
     1 
   23 
   39 
   16 

25 
26 
30 
19 
19 
22 
22 
24 
28 
29 
27 
27 

11 
  2 
31 
  6 
  7 
  4 
17 
19 
22 
23 
15 
  7 
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     7 
   10 
   11 
     5 
     4 
   20 
     1 
   16 
   20 
   20 
     3 

32 
26 
18 
38 
26 
23 
22 
34 
22 
27 
23 
26 

21 
20 
20 
35 
22 
10 
19 
27 
15 
18 
21 
18 

   11 
   18 
   26 
   34 
   22 
     8 
   19 
   23 
   12 
   13 
   19 
   13 

  

      a)  Run a repeated measures analysis of variance on these data. 

b)  Draw the appropriate conclusions. 

14.21)    Using the data from Exercise 14.20 use SPSS to run a mixed models analysis of 

variance, specifying an appropriate form for the covariance matrix, and compare the results with 

those you obtained in Exercise 14.20. 

14.22)  The following data come from Exercise 14.20 with some observations deleted. (An 

entry of “999” represents a missing observation. 

SIT PE SC 
Pre Post Followup Pre Post Followup Pre Post Followup 

19 
28 
18 
999 
21 
24 
26 
15 
18 
34 
20 
34 
29 
33 
22 

  6 
14 
  6 
  6 
  6 
10 
10 
  6 
  8 
13 
999 
10 
16 
19 
  7 

     1 
   16 
    8 
   11 
   13 
     8 
  999 
   13 
     6 
     8 
  999 
     1 
   23 
   39 
   16 

20 
999 
36 
25 
26 
30 
19 
19 
22 
22 
24 
28 
29 
27 
27 

  5 
999 
26 
11 
999 
31 
  6 
  7 
  4 
17 
19 
22 
23 
15 
  7 

    0  
   21 
   17 
     9 
     7 
   10 
   11 
  999 
  999 
   20 
     1 
   16 
   20 
   20 
     3 

12 
27 
24 
32 
26 
18 
38 
26 
23 
22 
34 
22 
27 
23 
26 

14 
18 
999 
21 
20 
20 
35 
22 
10 
19 
999 
15 
18 
21 
18 

   18 
     9 
   13 
   11 
   18 
   26 
   34 
 999 
     8 
   19 
 999 
   12 
   13 
   19 
   13 



  

            a) Analyze these data using a standard repeated measures analysis of variance. 

            b) How do your results differ from the results you found in Exercise 14.20? 

         14.23)  Now analyze the data in Exercise 14.22 using a mixed models approach, an 

appropriate form for the covariance matrix. How do those results differ from the results you 

found in Exercise 14.22? 

  

14.24)    In the data file Stress.dat, available on the Web site, are data on the stress level 

reported by cancer patients and their spouses at two different times—shortly after the diagnosis 

and 3 months later. The data are also distinguished by the gender of the respondent. As usual, a 

“.” indicates each missing data point.  See description in Appendix: Computer Data Sets, p. 

XXX. 

a)      Use any statistical package to run a repeated-measures analysis of variance with 

Gender and Role (patient versus spouse) as between-subject variables and Time as the repeated 

measure. 

b)      Have the program print out cell means, and plot these means as an aid in 

interpretation. 

c)      There is a significant three-way interaction in this analysis. Interpret it along with the 

main effects.  

14.25)  Everitt reported data on a study of three treatments for anorexia in young girls. One 

treatment was cognitive behavior therapy, a second was a control condition with no therapy, and 

a third was a family therapy condition. The data follow. 



  

  

 



Group Pretest Posttest Gain 
1 80.5 82.2 1.7 
1 84.9 85.6 .7 
1 81.5 81.4 -.1 
1 82.6 81.9 -.7 
1 79.9 76.4 -3.5 
1 88.7 103.6 14.9 
1 94.9 98.4 3.5 
1 76.3 93.4 17.1 
1 81.0 73.4 -7.6 
1 80.5 82.1 1.6 
1 85.0 96.7 11.7 
1 89.2 95.3 6.1 
1 81.3 82.4 1.1 
1 76.5 72.5 -4.0 
1 70.0 90.9 20.9 
1 80.4 71.3 -9.1 
1 83.3 85.4 2.1 
1 83.0 81.6 -1.4 
1 87.7 89.1 1.4 
1 84.2 83.9 -.3 
1 86.4 82.7 -3.7 
1 76.5 75.7 -.8 
1 80.2 82.6 2.4 
1 87.8 100.4 12.6 
1 83.3 85.2 1.9 
1 79.7 83.6 3.9 
1 84.5 84.6 .1 
1 80.8 96.2 15.4 
1 87.4 86.7 -.7 
2 80.7 80.2 -.5 
2 89.4 80.1 -9.3 
2 91.8 86.4 -5.4 
2 74.0 86.3 12.3 
2 78.1 76.1 -2.0 
2 88.3 78.1 -10.2 
2 87.3 75.1 -12.2 
  
Group Pretest Posttest Gain 
2 75.1 86.7 11.6 
2 80.6 73.5 -7.1 
2 78.4 84.6 6.2 
2 77.6 77.4 -0.2 
2 88.7 79.5 -9.2 
2 81.3 89.6 8.3 
2 78.1 81.4 3.3 
2 70.5 81.8 11.3 
2 77.3 77.3 0.0 
2 85.2 84.2 -1.0 
2 86.0 75.4 -10.6 
2 84.1 79.5 -4.6 



2 79.7 73.0 -6.7 
2 85.5 88.3 2.8 
2 84.4 84.7 0.3 
2 79.6 81.4 1.8 
2 77.5 81.2 3.7 
2 72.3 88.2 15.9 
2 89.0 78.8 -10.2 
3 83.8 95.2 11.4 
3 83.3 94.3 11.0 
3 86.0 91.5 5.5 
3 82.5 91.9 9.4 
3 86.7 100.3 13.6 
3 79.6 76.7 -2.9 
3 76.9 76.8 -0.1 
3 94.2 101.6 7.4 
3 73.4 94.9 21.5 
3 80.5 75.2 -5.3 
3 81.6 77.8 -3.8 
3 82.1 95.5 13.4 
3 77.6 90.7 13.1 
3 83.5 92.5 9.0 
3 89.9 93.8 3.9 
3 86.0 91.7 5.7 
3 87.3 98.0 10.7 

 
  

a)      Run an analysis of variance on group differences in Gain scores. 

b)      Repeat the analysis, but this time use a repeated measures design where the repeated 

measures are Pretest and Posttest. 

c)      How does the answer to part (b) relate to the answer to part  (a)? 

d)      Plot scatterplots of the relationship between Pretest and Posttest separately for each 

group. What do these plots show? 

e)      Run a test on the null hypothesis that the Gain for the Control is 0.00. What does this 

analysis tell you? Are you surprised? 

f)         Why would significant gains in the two experimental groups not be interpretable 

without the control group? 

  



Discussion Questions 

14.26)    In Exercise 14.24 we ignored the fact that we have pairs of subjects from the same 

family. 

a)  What is wrong with doing this? 

b)      Under what conditions would it be acceptable to ignore this problem? 

c)      What alternative analyses would you suggest?  

14.27)    In Exercise 14.24 you probably noticed that many observations at Time 2 are 

missing. (This is partly because for many patients it had not yet been 3 months since 

the diagnosis.) 

a)  Compare the means at Time 1 for those subjects who did, and who did not, have data 

at Time 2. 

b)  If there are differences in (a), what would this suggest to you about the data?  

  

Not Numbered  In a study of behavior problems in children we asked 3 “judges” to rate each 

of 20 children on the level of aggressive behavior. These judges were the child’s Parent, the 

child’s Teacher, and the child him/herself (Self). The data follow. 

Child            1      2      3      4      5      6      7      8      9    10    11    12    13    14    15    16    17    18    19    
20 
Parent        10    12    14      8    16    21    10    15    18      6    22    14    19    22    11    14    18    25    22      
7 
Teacher       8    13    17    10    18    24      9    16    18      8    24    19    15    20    10    18    19    30    20    
10 
Self             12    17    16    15    24    24    13    17    21    13    29    23    16    20    15    17    21    25    25    
14  

  

These data are somewhat different from the data we saw in Section 14.10 because in 

that case the same people judged each child, whereas here the Parent and Self 

obviously change from child to child. We will ignore that for the moment and simply 



act as if we could somehow have the same parent and the same “self” do all the 

ratings. 

14.28   What is the reliability of this data set in terms of the intraclass correlation coefficient? 

14.29   What do your calculations tell you about the sources of variability in this data set? 

14.30   Suppose that you had no concern about the fact that one source systematically rates 

children higher or lower than another source. How might you evaluate reliability differently? 

14.31   Under what conditions might you not be interested in differences among judges? 

14.32   What do you think is the importance of the fact that the “parent” who supplies the 

parent rating changes from child to child?  

14.33 Strayer, Drews, & Crouch (2006) (which we saw as a between-subjects design in 

Exercise 11.32) examined the effects of cell phone use on driving ability. They had 40 

drivers drive while speaking on a cell phone, drive while at the legal limit for alcohol 

(0.08%), and drive under normal conditions. (The conditions were counterbalanced across 

drivers.) The data for this study are found at 

www.uvm.edu/~dhowell/methods/DataFiles/Ex14-34. Their hypothesis, based on the 

research of others, was that driving while speaking on a cell phone would have as much of an 

effect as driving while intoxicated. The dependent variable in this example is “braking 

reaction time.” The data have exactly the same means and standard deviations as they found. 

  
      a) Run the analysis of variance for a repeated measures design. 
  

b) Use the appropriate contrasts to compare the three conditions. Did the results support the 

experimenters’ predictions? 

 
 

 



[1] This assumption is overly stringent and will shortly be relaxed somewhat. It is nonetheless a sufficient 
assumption, and it is made often. 
[2] Because I have rounded the means to three decimal places, there is rounding error in the answers. The answers 
given here have been based on more decimal places. 
[3] Both SPSS and SAS continue to calculate the wrong value for the Huynh-Feldt epsilon. 
[4] The authors used a logarithmic transformation here because the original data were very positively skewed. They 
took the log of (X + 1) instead of X because log(0) is not defined. 
[5] As in earlier tables of expected mean squares, we use the €σ2 to refer to the variance of random terms and θ2 to 
refer to the variability of fixed terms. Subjects are always treated as random, whereas in this study the two main 
independent variables are fixed. 
[6] For those who want to see the calculations, the corresponding pages from the previous edition can be found at 
www.uvm.edu/~dhowell/methods/whateverIcallit.html. 
[7] In previous editions I used the MANOVA approach under SPSS/Univariate/Repeated measures as a way of 
avoiding assumptions of compound symmetry. This approach does not require compound symmetry, but it does 
require balanced designs. I have dropped it in favor of the mixed model precisely because the mixed model will 
handle missing data much better. 
[8] The following is quick description of using the menu selections. Select analysis/mixed/linear, specify Subj for 
the Subjects box and Time for the Repeated box. Click continue and move to the next screen. Specify the 
dependent variable (dv) and the factors (Group and Time). Select fixed from the bottom of the box, highlight both 
Group and Time and click the add button, click continue. Now click on the random button and add Subj to the 
bottom box. Then click paste to make sure that you have syntax similar to what I gave above.  
  


